リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Rho family small GTPase Rif regulates Wnt5a-Ror1-Dvl2 signaling and promotes lung adenocarcinoma progression」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Rho family small GTPase Rif regulates Wnt5a-Ror1-Dvl2 signaling and promotes lung adenocarcinoma progression

Nishita, Michiru Kamizaki, Koki Hoshi, Kyoka Aruga, Kana Nishikaku, Ikumi Shibuya, Hiroshi Matsumoto, Kunio Minami, Yasuhiro 神戸大学

2023.10

概要

Rho in filopodia (Rif), a member of the Rho family of small GTPases, induces filopodia formation primarily on the dorsal surface of cells; however, its function remains largely unclear. Here, we show that Rif interacts with Ror1, a receptor for Wnt5a that can also induce dorsal filopodia. Our immunohistochemical analysis revealed a high frequency of coexpression of Ror1 and Rif in lung adenocarcinoma. Lung adenocarcinoma cells cultured on Matrigel established front–rear polarity with massive filopodia on their front surfaces, where Ror1 and Rif were accumulated. Suppression of Ror1 or Rif expression inhibited cell proliferation, survival, and invasion, accompanied by the loss of filopodia and cell polarity in vitro, and prevented tumor growth in vivo. Furthermore, we found that Rif was required to activate Wnt5a-Ror1 signaling at the cell surface leading to phosphorylation of the Wnt signaling pathway hub protein Dvl2, which was further promoted by culturing the cells on Matrigel. Our findings reveal a novel function of Rif in mediating Wnt5a-Ror1-Dvl2 signaling, which is associated with the formation of polarized filopodia on 3D matrices in lung adenocarcinoma cells.

この論文で使われている画像

参考文献

1. Mattila, P. K., and Lappalainen, P. (2008) Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446–454

2. Mellor, H. (2010) The role of formins in filopodia formation. Biochim.

Biophys. Acta 1803, 191–200

3. Meyen, D., Tarbashevich, K., Banisch, T. U., Wittwer, C., ReichmanFried, M., Maugis, B., et al. (2015) Dynamic filopodia are required for

chemokine-dependent intracellular polarization during guided cell

migration in vivo. Elife 4, e05279

4. Shibue, T., Brooks, M. W., Inan, M. F., Reinhardt, F., and Weinberg, R. A.

(2012) The outgrowth of micrometastases is enabled by the formation of

filopodium-like protrusions. Cancer Discov. 2, 706–721

5. Mattes, B., Dang, Y., Greicius, G., Kaufmann, L. T., Prunsche, B., Rosenbauer, J., et al. (2018) Wnt/PCP controls spreading of Wnt/beta-catenin

signals by cytonemes in vertebrates. Elife 7, e36953

6. Jacquemet, G., Hamidi, H., and Ivaska, J. (2015) Filopodia in cell

adhesion, 3D migration and cancer cell invasion. Curr. Opin. Cell Biol.

36, 23–31

7. Kanjhan, R., Noakes, P. G., and Bellingham, M. C. (2016) Emerging roles

of filopodia and dendritic spines in motoneuron plasticity during development and disease. Neural Plast 2016, 3423267

8. Krugmann, S., Jordens, I., Gevaert, K., Driessens, M., Vandekerckhove, J.,

and Hall, A. (2001) Cdc42 induces filopodia by promoting the formation

of an IRSp53:Mena complex. Curr. Biol. 11, 1645–1655

9. Miki, H., Sasaki, T., Takai, Y., and Takenawa, T. (1998) Induction of

filopodium formation by a WASP-related actin-depolymerizing protein

N-WASP. Nature 391, 93–96

10. Ellis, S., and Mellor, H. (2000) The novel Rho-family GTPase rif regulates

coordinated actin-based membrane rearrangements. Curr. Biol. 10,

1387–1390

11. Aspenstrom, P. (2022) The role of fast-cycling atypical RHO GTPases in

cancer. Cancers (Basel) 14, 1961

12. Pellegrin, S., and Mellor, H. (2005) The Rho family GTPase Rif induces

filopodia through mDia2. Curr. Biol. 15, 129–133

13. Sudhaharan, T., Sem, K. P., Liew, H. F., Yu, Y. H., Goh, W. I., Chou, A.

M., et al. (2016) The Rho GTPase Rif signals through IRTKS, Eps8 and

WAVE2 to generate dorsal membrane ruffles and filopodia. J. Cell Sci.

129, 2829–2840

14. Clevers, H., Loh, K. M., and Nusse, R. (2014) Stem cell signaling. An

integral program for tissue renewal and regeneration: Wnt signaling and

stem cell control. Science 346, 1248012

15. Nusse, R., and Clevers, H. (2017) Wnt/beta-Catenin signaling, disease,

and emerging therapeutic modalities. Cell 169, 985–999

16. Steinhart, Z., and Angers, S. (2018) Wnt signaling in development and

tissue homeostasis. Development 145, dev146589

17. Jiang, X., and Cong, F. (2016) Novel regulation of Wnt signaling at the

proximal membrane level. Trends Biochem. Sci. 41, 773–783

18. MacDonald, B. T., and He, X. (2012) Frizzled and LRP5/6 receptors for

Wnt/beta-catenin signaling. Cold Spring Harb. Perspect. Biol. 4,

a007880

19. van Amerongen, R. (2012) Alternative Wnt pathways and receptors. Cold

Spring Harb. Perspect. Biol. 4, a007914

20. Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C., and Garcia, K. C.

(2012) Structural basis of Wnt recognition by frizzled. Science 337, 59–64

21. Schulte, G., and Wright, S. C. (2018) Frizzleds as GPCRs - more conventional than we thought. Trends Pharmacol. Sci. 39, 828–842

22. Wang, Y., Chang, H., Rattner, A., and Nathans, J. (2016) Frizzled receptors in development and disease. Curr. Top Dev. Biol. 117, 113–139

23. Gao, C., and Chen, Y. G. (2010) Dishevelled: the hub of Wnt signaling.

Cell Signal. 22, 717–727

24. Bowin, C. F., Kozielewicz, P., Gratz, L., Kowalski-Jahn, M., Schihada, H.,

and Schulte, G. (2023) WNT stimulation induces dynamic conformational changes in the Frizzled-Dishevelled interaction. Sci. Signal. 16,

eabo4974

25. Gratz, L., Kowalski-Jahn, M., Scharf, M. M., Kozielewicz, P., Jahn, M.,

Bous, J., et al. (2023) Pathway selectivity in Frizzleds is achieved by

conserved micro-switches defining pathway-determining, active conformations. Nat. Commun. 14, 4573

26. Endo, M., Doi, R., Nishita, M., and Minami, Y. (2012) Ror family receptor

tyrosine kinases regulate the maintenance of neural progenitor cells in the

developing neocortex. J. Cell Sci. 125, 2017–2029

27. Ho, H. Y., Susman, M. W., Bikoff, J. B., Ryu, Y. K., Jonas, A. M., Hu, L.,

et al. (2012) Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc. Natl. Acad.

Sci. U. S. A. 109, 4044–4051

28. Nishita, M., Itsukushima, S., Nomachi, A., Endo, M., Wang, Z., Inaba, D.,

et al. (2010) Ror2/Frizzled complex mediates Wnt5a-induced AP-1

activation by regulating Dishevelled polymerization. Mol. Cell Biol. 30,

3610–3619

29. Schulte, G., Bryja, V., Rawal, N., Castelo-Branco, G., Sousa, K. M., and

Arenas, E. (2005) Purified Wnt-5a increases differentiation of midbrain

dopaminergic cells and dishevelled phosphorylation. J. Neurochem. 92,

1550–1553

30. Bryja, V., Schulte, G., Rawal, N., Grahn, A., and Arenas, E. (2007) Wnt-5a

induces Dishevelled phosphorylation and dopaminergic differentiation

via a CK1-dependent mechanism. J. Cell Sci. 120, 586–595

31. Grumolato, L., Liu, G., Mong, P., Mudbhary, R., Biswas, R., Arroyave, R.,

et al. (2010) Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev. 24,

2517–2530

32. Kaucka, M., Krejci, P., Plevova, K., Pavlova, S., Prochazkova, J., Janovska,

P., et al. (2011) Post-translational modifications regulate signalling by

Ror1. Acta Physiol. (Oxf) 203, 351–362

33. Nishita, M., Yoo, S. K., Nomachi, A., Kani, S., Sougawa, N., Ohta, Y., et al.

(2006) Filopodia formation mediated by receptor tyrosine kinase Ror2 is

required for Wnt5a-induced cell migration. J. Cell Biol. 175, 555–562

34. Paganoni, S., and Ferreira, A. (2005) Neurite extension in central neurons:

a novel role for the receptor tyrosine kinases Ror1 and Ror2. J. Cell Sci.

118, 433–446

35. Endo, M., Kamizaki, K., and Minami, Y. (2022) The Ror-family receptors

in development, tissue regeneration and age-related disease. Front. Cell

Dev. Biol. 10, 891763

36. Hou, Y., Zi, J., and Ge, Z. (2021) High expression of RhoF predicts worse

overall survival: a potential therapeutic target for non-M3 acute myeloid

leukemia. J. Cancer 12, 5530–5542

37. Li, S., Liu, Y., Bai, Y., Chen, M., Cheng, D., Wu, M., et al. (2021) Ras

homolog family member F, filopodia associated promotes hepatocellular

carcinoma metastasis by altering the metabolic status of cancer cells

through RAB3D. Hepatology 73, 2361–2379

38. Yang, R. M., Zhan, M., Xu, S. W., Long, M. M., Yang, L. H., Chen, W.,

et al. (2017) miR-3656 expression enhances the chemosensitivity of

pancreatic cancer to gemcitabine through modulation of the RHOF/EMT

axis. Cell Death Dis. 8, e3129

39. Yamaguchi, T., Yanagisawa, K., Sugiyama, R., Hosono, Y., Shimada, Y.,

Arima, C., et al. (2012) NKX2-1/TITF1/TTF-1-Induced ROR1 is required

to sustain EGFR survival signaling in lung adenocarcinoma. Cancer Cell

21, 348–361

40. Zheng, Y. Z., Ma, R., Zhou, J. K., Guo, C. L., Wang, Y. S., Li, Z. G., et al.

(2016) ROR1 is a novel prognostic biomarker in patients with lung

adenocarcinoma. Sci. Rep. 6, 36447

41. Horino, K., Kindezelskii, A. L., Elner, V. M., Hughes, B. A., and Petty, H.

R. (2001) Tumor cell invasion of model 3-dimensional matrices:

J. Biol. Chem. (2023) 299(10) 105248

13

Rif regulates Wnt5a-Ror1 signaling in lung adenocarcinoma

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

demonstration of migratory pathways, collagen disruption, and intercellular cooperation. FASEB J. 15, 932–939

Nishita, M., Park, S. Y., Nishio, T., Kamizaki, K., Wang, Z., Tamada, K.,

et al. (2017) Ror2 signaling regulates Golgi structure and transport

through IFT20 for tumor invasiveness. Sci. Rep. 7, 1

Radaszkiewicz, T., Noskova, M., Gomoryova, K., Vondalova Blanarova,

O., Radaszkiewicz, K. A., Pickova, M., et al. (2021) RNF43 inhibits

WNT5A-driven signaling and suppresses melanoma invasion and resistance to the targeted therapy. Elife 10, e65759

Gujral, T. S., Chan, M., Peshkin, L., Sorger, P. K., Kirschner, M. W., and

MacBeath, G. (2014) A noncanonical Frizzled2 pathway regulates

epithelial-mesenchymal transition and metastasis. Cell 159, 844–856

Nobes, C. D., and Hall, A. (1995) Rho, rac, and cdc42 GTPases regulate

the assembly of multimolecular focal complexes associated with actin

stress fibers, lamellipodia, and filopodia. Cell 81, 53–62

Yui, Y., Itoh, K., Yoshioka, K., Naka, N., Watanabe, M., Hiraumi, Y., et al.

(2010) Mesenchymal mode of migration participates in pulmonary

metastasis of mouse osteosarcoma LM8. Clin. Exp. Metast. 27, 619–630

Bohil, A. B., Robertson, B. W., and Cheney, R. E. (2006) Myosin-X is a

molecular motor that functions in filopodia formation. Proc. Natl. Acad.

Sci. U. S. A. 103, 12411–12416

Berg, J. S., and Cheney, R. E. (2002) Myosin-X is an unconventional

myosin that undergoes intrafilopodial motility. Nat. Cell Biol. 4,

246–250

Gousset, K., Marzo, L., Commere, P. H., and Zurzolo, C. (2013) Myo10 is

a key regulator of TNT formation in neuronal cells. J. Cell Sci. 126,

4424–4435

Raines, A. N., Nagdas, S., Kerber, M. L., and Cheney, R. E. (2012)

Headless Myo10 is a negative regulator of full-length Myo10 and

inhibits axon outgrowth in cortical neurons. J. Biol. Chem. 287,

24873–24883

Sousa, A. D., Berg, J. S., Robertson, B. W., Meeker, R. B., and Cheney, R. E.

(2006) Myo10 in brain: developmental regulation, identification of a

headless isoform and dynamics in neurons. J. Cell Sci. 119, 184–194

Tokuo, H., Bhawan, J., and Coluccio, L. M. (2018) Myosin X is required

for efficient melanoblast migration and melanoma initiation and metastasis. Sci. Rep. 8, 10449

14 J. Biol. Chem. (2023) 299(10) 105248

53. Saji, T., Nishita, M., Ikeda, K., Endo, M., Okada, Y., and Minami, Y. (2022)

c-Src-mediated phosphorylation and activation of kinesin KIF1C promotes elongation of invadopodia in cancer cells. J. Biol. Chem. 298,

102090

54. Schoumacher, M., Goldman, R. D., Louvard, D., and Vignjevic, D. M.

(2010) Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J. Cell Biol. 189, 541–556

55. Eddy, R. J., Weidmann, M. D., Sharma, V. P., and Condeelis, J. S. (2017)

Tumor cell invadopodia: invasive protrusions that orchestrate metastasis.

Trends Cell Biol. 27, 595–607

56. Linder, S. (2007) The matrix corroded: podosomes and invadopodia in

extracellular matrix degradation. Trends Cell Biol. 17, 107–117

57. Wisdom, K. M., Adebowale, K., Chang, J., Lee, J. Y., Nam, S., Desai, R.,

et al. (2018) Matrix mechanical plasticity regulates cancer cell migration

through confining microenvironments. Nat. Commun. 9, 4144

58. Schlessinger, K., McManus, E. J., and Hall, A. (2007) Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell

polarity. J. Cell Biol. 178, 355–361

59. Nishita, M., Aizawa, H., and Mizuno, K. (2002) Stromal cell-derived

factor 1alpha activates LIM kinase 1 and induces cofilin phosphorylation for T-cell chemotaxis. Mol. Cell Biol. 22, 774–783

60. Enomoto, M., Hayakawa, S., Itsukushima, S., Ren, D. Y., Matsuo, M.,

Tamada, K., et al. (2009) Autonomous regulation of osteosarcoma cell

invasiveness by Wnt5a/Ror2 signaling. Oncogene 28, 3197–3208

61. Kani, S., Oishi, I., Yamamoto, H., Yoda, A., Suzuki, H., Nomachi, A., et al.

(2004) The receptor tyrosine kinase Ror2 associates with and is activated

by casein kinase Iepsilon. J. Biol. Chem. 279, 50102–50109

62. Ren, D., Minami, Y., and Nishita, M. (2011) Critical role of Wnt5a-Ror2

signaling in motility and invasiveness of carcinoma cells following Snailmediated epithelial-mesenchymal transition. Genes Cells 16, 304–315

63. Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al.

(2012) The cBio cancer genomics portal: an open platform for exploring

multidimensional cancer genomics data. Cancer Discov. 2, 401–404

64. Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O.,

et al. (2013) Integrative analysis of complex cancer genomics and clinical

profiles using the cBioPortal. Sci. Signal. 6. https://doi.org/10.1126/scisignal.2004088

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る