リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Urinary MicroRNA-Based Diagnostic Model for Central Nervous System Tumors Using Nanowire Scaffolds」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Urinary MicroRNA-Based Diagnostic Model for Central Nervous System Tumors Using Nanowire Scaffolds

Kitano Yotaro 三重大学

2021.11.16

概要

There are no accurate mass screening methods for early detection of central nervous system (CNS) tumors. Recently, liquid biopsy has received a lot of attention for less-invasive cancer screening. Unlike other cancers, CNS tumors require efforts to find biomarkers due to the blood−brain barrier, which restricts molecular exchange between the parenchyma and blood. Additionally, because a satisfactory way to collect urinary biomarkers is lacking, urine-based liquid biopsy has not been fully investigated despite the fact that it has some advantages compared to blood or cerebrospinal fluid-based biopsy. Here, we have developed a massproducible and sterilizable nanowire-based device that can extract urinary microRNAs efficiently. Urinary microRNAs from patients with CNS tumors (n = 119) and noncancer individuals (n = 100) were analyzed using a microarray to yield comprehensive microRNA expression profiles. To clarify the origin of urinary microRNAs of patients with CNS tumors, glioblastoma organoids were generated. Glioblastoma organoid-derived differentially expressed microRNAs (DEMs) included 73.4% of the DEMs in urine of patients with parental tumors but included only 3.9% of those in urine of noncancer individuals, which suggested that many CNS tumor-derived microRNAs could be identified in urine directly. We constructed the diagnostic model based on the expression of the selected microRNAs and found that it was able to differentiate patients and noncancer individuals at a sensitivity and specificity of 100 and 97%, respectively, in an independent dataset. Our findings demonstrate that urinary microRNAs extracted with the nanowire device offer a well-fitted strategy for mass screening of CNS tumors.

参考文献

(1) Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2020. CaCancer J. Clin. 2020, 70, 7−30.

(2) Ostrom, Q. T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.;

Barnholtz-Sloan, J. S. CBTRUS Statistical Report: Primary Brain and

Other Central Nervous System Tumors Diagnosed in the United

States in 2013-2017. Neuro-Oncology 2020, 22, iv1−iv96.

(3) Best, M. G.; Sol, N.; Zijl, S.; Reijneveld, J. C.; Wesseling, P.;

Wurdinger, T. Liquid biopsies in patients with diffuse glioma. Acta

Neuropathol. 2015, 129, 849−865.

(4) Heitzer, E.; Perakis, S.; Geigl, J. B.; Speicher, M. R. The potential

of liquid biopsies for the early detection of cancer. npj Precis. Oncol.

2017, 1, No. 36.

(5) Bartel, D. P. MicroRNAs- Genomics, Biogenesis, Mechanism,

and Function. Cell 2004, 116, 281−297.

(6) Valadi, H.; Ekstrom, K.; Bossios, A.; Sjostrand, M.; Lee, J. J.;

Lotvall, J. O. Exosome-mediated transfer of mRNAs and microRNAs

is a novel mechanism of genetic exchange between cells. Nat. Cell Biol.

2007, 9, 654−659.

(7) Pegtel, D. M.; Cosmopoulos, K.; Thorley-Lawson, D. A.; van

Eijndhoven, M. A.; Hopmans, E. S.; Lindenberg, J. L.; de Gruijl, T. D.;

Wurdinger, T.; Middeldorp, J. M. Functional delivery of viral miRNAs

via exosomes. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 6328−6333.

(8) Shimomura, A.; Shiino, S.; Kawauchi, J.; Takizawa, S.; Sakamoto,

H.; Matsuzaki, J.; Ono, M.; Takeshita, F.; Niida, S.; Shimizu, C.;

Fujiwara, Y.; Kinoshita, T.; Tamura, K.; Ochiya, T. Novel

combination of serum microRNA for detecting breast cancer in the

early stage. Cancer Sci. 2016, 107, 326−334.

(9) Yokoi, A.; Matsuzaki, J.; Yamamoto, Y.; Yoneoka, Y.; Takahashi,

K.; Shimizu, H.; Uehara, T.; Ishikawa, M.; Ikeda, S. I.; Sonoda, T.;

Kawauchi, J.; Takizawa, S.; Aoki, Y.; Niida, S.; Sakamoto, H.; Kato,

K.; Kato, T.; Ochiya, T. Integrated extracellular microRNA profiling

for ovarian cancer screening. Nat. Commun. 2018, 9, No. 4319.

(10) Usuba, W.; Urabe, F.; Yamamoto, Y.; Matsuzaki, J.; Sasaki, H.;

Ichikawa, M.; Takizawa, S.; Aoki, Y.; Niida, S.; Kato, K.; Egawa, S.;

Chikaraishi, T.; Fujimoto, H.; Ochiya, T. Circulating miRNA panels

for specific and early detection in bladder cancer. Cancer Sci. 2019,

110, 408−419.

(11) Kim, H.; Park, S.; Jeong, I. G.; Song, S. H.; Jeong, Y.; Kim, C.

S.; Lee, K. H. Noninvasive Precision Screening of Prostate Cancer by

Urinary Multimarker Sensor and Artificial Intelligence Analysis. ACS

Nano 2021, 15, 4054−4065.

(12) Cheng, L.; Sun, X.; Scicluna, B. J.; Coleman, B. M.; Hill, A. F.

Characterization and deep sequencing analysis of exosomal and nonexosomal miRNA in human urine. Kidney Int. 2014, 86, 433−444.

(13) Sun, J.; Han, S.; Ma, L.; Zhang, H.; Zhan, Z.; Aguilar, H. A.;

Zhang, H.; Xiao, K.; Gu, Y.; Gu, Z.; Tao, W. A. Synergistically

Bifunctional Paramagnetic Separation Enables Efficient Isolation of

Urine Extracellular Vesicles and Downstream Phosphoproteomic

Analysis. ACS Appl. Mater. Interfaces 2021, 13, 3622−3630.

(14) Yasui, T.; Yanagida, T.; Ito, S.; Konakade, Y.; Takeshita, T.;

Naganawa, T.; Nagashima, K.; Shimada, T.; Kaji, N.; Nakamura, Y.;

Thiodorus, A. I.; He, Y.; Rahong, S.; Kanai, M.; Yukawa, H.; Ochiya,

T.; Kawai, T.; Baba, Y. Unveiling massive numbers of cancer-related

urinary-microRNA candidates via nanowires. Sci. Adv. 2017, 3,

No. e1701133.

(15) Abbott, N. J.; Patabendige, A. A.; Dolman, D. E.; Yusof, S. R.;

Begley, D. J. Structure and function of the blood-brain barrier.

Neurobiol. Dis. 2010, 37, 13−25.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by a Grant-in-Aid for Scientific

Research on Innovative Areas “Chemistry for Multimolecular

Crowding Biosystems” (JSPS KAKENHI Grant no. 17H06356

to A.N.), a PRESTO (JST Grant no. JPMJPR19H9 to T.Y.), a

Medical Research and Development Program (AMED Grand

no. JP21he2302007 to T.Y. and A.N.), a SICORP (JST Grant

no. JPMJSC19E3 to T.Y.), a Grant-in-Aid for Young Scientists

(A) (JSPS KAKENHI Grant no. 17H04803 to T.Y.), a Grantin-Aid for Scientific Research (S) (JSPS KAKENHI Grant no.

18H05243 to T.Y.), a Grant-in-Aid for Exploratory Research

(JSPS KAKENHI Grant no. 20K21124 to T.Y.), and a Grantin-Aid for Young Scientists (B) (JSPS KAKENHI Grant no.

17K16643 to K.A.).

ABBREVIATIONS

AUC, area under the curve

BBB, blood−brain barrier

CI, confidence interval

CNS, central nervous system

COP, cyclo-olefin polymer

CT, computed tomography

DEM, differentially expressed microRNA

DNT, dysembryoplastic neuroepithelial tumor

EV, extracellular vesicle

FBS, fetal bovine serum

GBM, glioblastoma

GBO, glioblastoma organoid

GEO, Gene Expression Omnibus

GO, Gene Ontology

IDH, isocitrate dehydrogenase

IHC, immunohistochemistry

LASSO, least absolute shrinkage and selection operator

LGG, lower grade glioma

mRNA, messenger RNAs

miRNA, microRNA

MRI, magnetic resonance imaging

MVNT, multinodular and vacuolating neuronal tumor of

the cerebrum

N/A, not applicable

NCBI, National Center for Biotechnology Information

NHA, normal human astrocyte

NOS, not otherwise specified

nt, nucleotide

PBS, phosphate-buffered saline

PCR, polymerase chain reaction

PDMS, poly(dimethylsiloxane)

PEEK, polyether ether ketone

17327

https://doi.org/10.1021/acsami.1c01754

ACS Appl. Mater. Interfaces 2021, 13, 17316−17329

ACS Applied Materials & Interfaces

www.acsami.org

(16) Jacob, F.; Salinas, R. D.; Zhang, D. Y.; Nguyen, P. T. T.;

Schnoll, J. G.; Wong, S. Z. H.; Thokala, R.; Sheikh, S.; Saxena, D.;

Prokop, S.; Liu, D. A.; Qian, X.; Petrov, D.; Lucas, T.; Chen, H. I.;

Dorsey, J. F.; Christian, K. M.; Binder, Z. A.; Nasrallah, M.; Brem, S.;

OʼRourke, D. M.; Ming, G. L.; Song, H. A Patient-Derived

Glioblastoma Organoid Model and Biobank Recapitulates Interand Intra-tumoral Heterogeneity. Cell 2020, 180, 188−204.

(17) Golebiewska, A.; Hau, A. C.; Oudin, A.; Stieber, D.; Yabo, Y.

A.; Baus, V.; Barthelemy, V.; Klein, E.; Bougnaud, S.; Keunen, O.;

Wantz, M.; Michelucci, A.; Neirinckx, V.; Muller, A.; Kaoma, T.;

Nazarov, P. V.; Azuaje, F.; De Falco, A.; Flies, B.; Richart, L.;

Poovathingal, S.; Arns, T.; Grzyb, K.; Mock, A.; Herold-Mende, C.;

Steino, A.; Brown, D.; May, P.; Miletic, H.; Malta, T. M.; Noushmehr,

H.; Kwon, Y. J.; Jahn, W.; Klink, B.; Tanner, G.; Stead, L. F.;

Mittelbronn, M.; Skupin, A.; Hertel, F.; Bjerkvig, R.; Niclou, S. P.

Patient-derived organoids and orthotopic xenografts of primary and

recurrent gliomas represent relevant patient avatars for precision

oncology. Acta Neuropathol. 2020, 140, 919−949.

(18) Szvicsek, Z.; Oszvald, A.; Szabo, L.; Sandor, G. O.; Kelemen,

A.; Soos, A. A.; Paloczi, K.; Harsanyi, L.; Tolgyes, T.; Dede, K.;

Bursics, A.; Buzas, E. I.; Zeold, A.; Wiener, Z. Extracellular vesicle

release from intestinal organoids is modulated by Apc mutation and

other colorectal cancer progression factors. Cell. Mol. Life Sci. 2019,

76, 2463−2476.

(19) Shinohara, H.; Yagita, H.; Ikawa, Y.; Oyaizu, N. Fas Drives Cell

Cycle Progression in Glioma Cells Via Extracellular Signal- Regulated

Kinase Activation. Cancer Res. 2000, 60, 1766−1772.

(20) Pulvirenti, T.; Van Der Heijden, M.; Droms, L. A.; Huse, J. T.;

Tabar, V.; Hall, A. Dishevelled 2 signaling promotes self-renewal and

tumorigenicity in human gliomas. Cancer Res. 2011, 71, 7280−7290.

(21) Obuchowski, N. A.; Bullen, J. A. Receiver operating

characteristic (ROC) curves: review of methods with applications in

diagnostic medicine. Phys. Med. Biol. 2018, 63, No. 07TR01.

(22) Fluss, R.; Faraggi, D.; Reiser, B. Estimation of the Youden

Index and its associated cutoff point. Biom. J. 2005, 47, 458−472.

(23) Hoo, Z. H.; Candlish, J.; Teare, D. What is an ROC curve?

Emerg. Med. J. 2017, 34, 357−359.

(24) Song, P.; Ye, D.; Zuo, X.; Li, J.; Wang, J.; Liu, H.; Hwang, M.

T.; Chao, J.; Su, S.; Wang, L.; Shi, J.; Wang, L.; Huang, W.; Lal, R.;

Fan, C. DNA Hydrogel with Aptamer-Toehold-Based Recognition,

Cloaking, and Decloaking of Circulating Tumor Cells for Live Cell

Analysis. Nano Lett. 2017, 17, 5193−5198.

(25) Dong, S.; Wang, Y.; Liu, Z.; Zhang, W.; Yi, K.; Zhang, X.;

Zhang, X.; Jiang, C.; Yang, S.; Wang, F.; Xiao, X. Beehive-Inspired

Macroporous SERS Probe for Cancer Detection through Capturing

and Analyzing Exosomes in Plasma. ACS Appl. Mater. Interfaces 2020,

12, 5136−5146.

(26) Smith, R.; Duan, W.; Quarterman, J.; Morris, A.; Collie, C.;

Black, M.; Toor, F.; Salem, A. K. Surface Modifying Doped Silicon

Nanowire Based Solar Cells for Applications in Biosensing. Adv.

Mater. Technol. 2019, 4, No. 1800349.

(27) Morad, G.; Carman, C. V.; Hagedorn, E. J.; Perlin, J. R.; Zon, L.

I.; Mustafaoglu, N.; Park, T. E.; Ingber, D. E.; Daisy, C. C.; Moses, M.

A. Tumor-Derived Extracellular Vesicles Breach the Intact BloodBrain Barrier via Transcytosis. ACS Nano 2019, 13, 13853−13865.

(28) Suzuki, H.; Aoki, K.; Chiba, K.; Sato, Y.; Shiozawa, Y.; Shiraishi,

Y.; Shimamura, T.; Niida, A.; Motomura, K.; Ohka, F.; Yamamoto, T.;

Tanahashi, K.; Ranjit, M.; Wakabayashi, T.; Yoshizato, T.; Kataoka,

K.; Yoshida, K.; Nagata, Y.; Sato-Otsubo, A.; Tanaka, H.; Sanada, M.;

Kondo, Y.; Nakamura, H.; Mizoguchi, M.; Abe, T.; Muragaki, Y.;

Watanabe, R.; Ito, I.; Miyano, S.; Natsume, A.; Ogawa, S. Mutational

landscape and clonal architecture in grade II and III gliomas. Nat.

Genet. 2015, 47, 458−468.

(29) Aoki, K.; Nakamura, H.; Suzuki, H.; Matsuo, K.; Kataoka, K.;

Shimamura, T.; Motomura, K.; Ohka, F.; Shiina, S.; Yamamoto, T.;

Nagata, Y.; Yoshizato, T.; Mizoguchi, M.; Abe, T.; Momii, Y.;

Muragaki, Y.; Watanabe, R.; Ito, I.; Sanada, M.; Yajima, H.; Morita,

N.; Takeuchi, I.; Miyano, S.; Wakabayashi, T.; Ogawa, S.; Natsume,

A. Prognostic relevance of genetic alterations in diffuse lower-grade

gliomas. Neuro-Oncololgy 2018, 20, 66−77.

(30) Ellingson, B. M.; Abrey, L. E.; Nelson, S. J.; Kaufmann, T. J.;

Garcia, J.; Chinot, O.; Saran, F.; Nishikawa, R.; Henriksson, R.;

Mason, W. P.; Wick, W.; Butowski, N.; Ligon, K. L.; Gerstner, E. R.;

Colman, H.; de Groot, J.; Chang, S.; Mellinghoff, I.; Young, R. J.;

Alexander, B. M.; Colen, R.; Taylor, J. W.; Arrillaga-Romany, I.;

Mehta, A.; Huang, R. Y.; Pope, W. B.; Reardon, D.; Batchelor, T.;

Prados, M.; Galanis, E.; Wen, P. Y.; Cloughesy, T. F. Validation of

postoperative residual contrast-enhancing tumor volume as an

independent prognostic factor for overall survival in newly diagnosed

glioblastoma. Neuro-Oncology 2018, 20, 1240−1250.

(31) Zachariah, M. A.; Oliveira-Costa, J. P.; Carter, B. S.; Stott, S. L.;

Nahed, B. V. Blood-based biomarkers for the diagnosis and

monitoring of gliomas. Neuro-Oncology 2018, 20, 1155−1161.

(32) Ohno, M.; Matsuzaki, J.; Kawauchi, J.; Aoki, Y.; Miura, J.;

Takizawa, S.; Kato, K.; Sakamoto, H.; Matsushita, Y.; Takahashi, M.;

Miyakita, Y.; Ichimura, K.; Narita, Y.; Ochiya, T. Assessment of the

Diagnostic Utility of Serum MicroRNA Classification in Patients With

Diffuse Glioma. JAMA Netw. Open 2019, 2, No. e1916953.

(33) Ledur, P. F.; Onzi, G. R.; Zong, H.; Lenz, G. Culture

Conditions Defining Glioblastoma Cells Behavior: What Is the

Impact for Novel Discoveries? Oncotarget 2017, 8, 69185−69197.

(34) Schalper, K. A.; Rodriguez-Ruiz, M. E.; Diez-Valle, R.; LopezJaneiro, A.; Porciuncula, A.; Idoate, M. A.; Inoges, S.; de Andrea, C.;

Lopez-Diaz de Cerio, A.; Tejada, S.; Berraondo, P.; VillarroelEspindola, F.; Choi, J.; Gurpide, A.; Giraldez, M.; Goicoechea, I.;

Gallego Perez-Larraya, J.; Sanmamed, M. F.; Perez-Gracia, J. L.;

Melero, I. Neoadjuvant nivolumab modifies the tumor immune

microenvironment in resectable glioblastoma. Nat. Med. 2019, 25,

470−476.

(35) Cloughesy, T. F.; Mochizuki, A. Y.; Orpilla, J. R.; Hugo, W.;

Lee, A. H.; Davidson, T. B.; Wang, A. C.; Ellingson, B. M.; Rytlewski,

J. A.; Sanders, C. M.; Kawaguchi, E. S.; Du, L.; Li, G.; Yong, W. H.;

Gaffey, S. C.; Cohen, A. L.; Mellinghoff, I. K.; Lee, E. Q.; Reardon, D.

A.; OʼBrien, B. J.; Butowski, N. A.; Nghiemphu, P. L.; Clarke, J. L.;

Arrillaga-Romany, I. C.; Colman, H.; Kaley, T. J.; de Groot, J. F.; Liau,

L. M.; Wen, P. Y.; Prins, R. M. Neoadjuvant anti-PD-1

immunotherapy promotes a survival benefit with intratumoral and

systemic immune responses in recurrent glioblastoma. Nat. Med.

2019, 25, 477−486.

(36) Jeppesen, D. K.; Hvam, M. L.; Primdahl-Bengtson, B.; Boysen,

A. T.; Whitehead, B.; Dyrskjot, L.; Orntoft, T. F.; Howard, K. A.;

Ostenfeld, M. S. Comparative analysis of discrete exosome fractions

obtained by differential centrifugation. J. Extracell. Vesicles 2014, 3,

No. 25011.

(37) Hirano, M.; Ohka, F.; Maeda, S.; Chalise, L.; Yamamichi, A.;

Aoki, K.; Kato, A.; Tanahashi, K.; Motomura, K.; Nishimura, Y.; Hara,

M.; Shinjo, K.; Kondo, Y.; Wakabayashi, T.; Natsume, A. A novel

high-sensitivity assay to detect a small fraction of mutant IDH1 using

droplet digital PCR. Brain Tumor Pathol. 2018, 35, 97−105.

(38) Louis, D. N.; Perry, A.; Reifenberger, G.; von Deimling, A.;

Figarella-Branger, D.; Cavenee, W. K.; Ohgaki, H.; Wiestler, O. D.;

Kleihues, P.; Ellison, D. W. The 2016 World Health Organization

Classification of Tumors of the Central Nervous System: a summary.

Acta Neuropathol. 2016, 131, 803−820.

(39) Li, H.; Durbin, R. Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754−1760.

(40) Cibulskis, K.; Lawrence, M. S.; Carter, S. L.; Sivachenko, A.;

Jaffe, D.; Sougnez, C.; Gabriel, S.; Meyerson, M.; Lander, E. S.; Getz,

G. Sensitive detection of somatic point mutations in impure and

heterogeneous cancer samples. Nat. Biotechnol. 2013, 31, 213−219.

(41) Yokoi, A.; Yoshioka, Y.; Hirakawa, A.; Yamamoto, Y.; Ishikawa,

M.; Ikeda, S.; Kato, T.; Niimi, K.; Kajiyama, H.; Kikkawa, F.; Ochiya,

T. A Combination of Circulating Mirnas for the Early Detection of

Ovarian Cancer. Oncotarget 2017, 8, 89811−89823.

(42) Sonoda, Y.; Ozawa, T.; Hirose, Y.; Aldape, D. K.; McMahon,

M.; Berger, S. M.; Pieper, O. R. Formation of Intracranial Tumors by

Genetically Modified Human Astrocytes Defines Four Pathways

17328

Research Article

https://doi.org/10.1021/acsami.1c01754

ACS Appl. Mater. Interfaces 2021, 13, 17316−17329

ACS Applied Materials & Interfaces

www.acsami.org

Research Article

Critical in the Development of Human Anaplastic Astrocytoma.

Cancer Res. 2001, 61, 4956−4960.

(43) Ohka, F.; Shinjo, K.; Deguchi, S.; Matsui, Y.; Okuno, Y.;

Katsushima, K.; Suzuki, M.; Kato, A.; Ogiso, N.; Yamamichi, A.; Aoki,

K.; Suzuki, H.; Sato, S.; Arul Rayan, N.; Prabhakar, S.; Goke, J.;

Shimamura, T.; Maruyama, R.; Takahashi, S.; Suzumura, A.; Kimura,

H.; Wakabayashi, T.; Zong, H.; Natsume, A.; Kondo, Y. Pathogenic

Epigenetic Consequences of Genetic Alterations in IDH-Wild-Type

Diffuse Astrocytic Gliomas. Cancer Res. 2019, 79, 4814−4827.

(44) Takahashi, I.; Hama, Y.; Matsushima, M.; Hirotani, M.; Kano,

T.; Hohzen, H.; Yabe, I.; Utsumi, J.; Sasaki, H. Identification of

plasma microRNAs as a biomarker of sporadic Amyotrophic Lateral

Sclerosis. Mol. Brain 2015, 8, No. 67.

(45) Duan, J.; Soussen, C.; Brie, D.; Idier, J.; Wan, M.; Wang, Y. P.

Generalized LASSO with under-determined regularization matrices.

Signal Process. 2016, 127, 239−246.

(46) Li, J. H.; Liu, S.; Zhou, H.; Qu, L. H.; Yang, J. H. starBase v2.0:

decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res.

2014, 42, D92−D97.

(47) Deguchi, S.; Katsushima, K.; Hatanaka, A.; Shinjo, K.; Ohka, F.;

Wakabayashi, T.; Zong, H.; Natsume, A.; Kondo, Y. Oncogenic

effects of evolutionarily conserved noncoding RNA ECONEXIN on

gliomagenesis. Oncogene 2017, 36, 4629−4640.

(48) Ranjit, M.; Hirano, M.; Aoki, K.; Okuno, Y.; Ohka, F.;

Yamamichi, A.; Kato, A.; Maeda, S.; Motomura, K.; Matsuo, K.;

Enomoto, A.; Ino, Y.; Todo, T.; Takahashi, M.; Wakabayashi, T.;

Kato, T.; Natsume, A. Aberrant Active cis-Regulatory Elements

Associated with Downregulation of RET Finger Protein Overcome

Chemoresistance in Glioblastoma. Cell Rep. 2019, 26, 2274−2281.

(49) Benjamini, Y.; Hochberg, Y. Controlling the False Discovery

Rate: A Practical and Powerful Approach to Multiple Testing. J. R.

Stat. Soc. 1995, 57, 289−300.

17329

https://doi.org/10.1021/acsami.1c01754

ACS Appl. Mater. Interfaces 2021, 13, 17316−17329

...

参考文献をもっと見る