リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Targeted mutagenesis using CRISPR-Cas9 in sea urchin, Hemicentrotus pulcherrimus」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Targeted mutagenesis using CRISPR-Cas9 in sea urchin, Hemicentrotus pulcherrimus

Liu Daming 広島大学

2020.03.03

概要

Sea urchins are invertebrate deuterostomes, which is a sister group of the chordates.
Investigation of the sea urchin genome is important to understand the origin of vertebrate
gene functions. Sea urchins are a model organism for research on developmental biology.
The fertilized eggs and embryos of sea urchin can be manipulated directly because of its
simple organization. It is therefore very suitable for studies of developmental process
such as morphogenetic movements, cell interactions, changes in gene expression
associated with the establishment of tissue territories (Becker et al., 2003). Furthermore,
sea urchin has been recently used for the analysis of gene regulatory networks during
early development (Davidson et al., 2002; Oliveri & Davidson, 2004; Oliveri et al.,
2008).
Although deuterostomes generally have bilateral bodies, the bilateral body plan of
sea urchin embryos and larvae is converted to a pentameral body plan after
metamorphosis. The metamorphosis of sea urchin is a complex developmental
progression, much of which takes place in the adult rudiment produced from the left side
of the coelomic pouch that originates from small micromere and macromere descendants
(Cameron et al., 1991; Cameron et al., 1987).
The first sea urchin genome sequenced was that of Strongylocentrotus purpuratus
(Sea Urchin Genome Sequencing Consortium, 2006). Hemicentrotus pulcherrimus,
which is closely related to S. purpuratus, is widely distributed in Japan and has also been
used for research on developmental biology. The H. pulcherrimus genome was
deciphered in 2018 (Kinjo et al., 2018). The genome size of H. pulcherrimus was
estimated to be 800 Mbp, with approximately 25,000 genes.
Analysis of gene function in the sea urchin embryo has relied on gene knockdown
by morpholino antisense oligonucleotide (MASO), which blocks translation or RNA
splicing of gene transcripts of interest (Angerer & Angerer, 2004). However, the effect
of MASO‐mediated knockdown is not long lasting. Therefore, it is impossible to perturb
gene expression during late developmental stages by MASO. ...

この論文で使われている画像

参考文献

Angerer, L. M., & Angerer, R. C. (2004). Disruption of gene function using antisense

morpholinos. Methods in Cell Biology, 74, 699–711.

Becker, W. M., Kleinsmith, L. J., Hardin, J. & Bertoni, G. P. (2003) The world of the cell.

San Francisco: Benjamin/Cummings Publishing Company.

Barsi, J. C., Tu, Q., Calestani, C., & Davidson, E. H. (2015). Genome‐wide assessment

of differential effector gene use in embryogenesis. Development, 142, 3892–3901.

Beeble, A., & Calestani, C. (2012). Expression pattern of polyketide synthase‐2 during

sea urchin development. Gene Expression Patterns, 12, 7–10.

Britten, R. J., Cetta, A., & Davidson, E. H. (1978). The single‐copy DNA sequence

polymorphism of the sea urchin Strongylocentrotus purpuratus. Cell, 15, 1175–1186.

Calestani, C., Rast, J. P., & Davidson, E. H. (2003). Isolation of pigment cell specific

genes in the sea urchin embryo by differential macroarray screening. Development, 130,

4587–4596.

Cameron, R. A., Fraser, S. E., Britten, R. J., & Davidson, E. H. (1991). Macromere cell

fates during sea urchin development. Development, 113, 1085–1091.

Cameron, R. A., Hough‐Evans, B. R., Britten, R. J., & Davidson, E. H. (1987). Lineage

and fate of each blastomere of the eight‐cell sea urchin embryo. Genes and Development,

1, 75–85.

Castoe, T. A., Stephens, T., Noonan, B. P., & Calestani, C. (2007). A novel group of type

I polyketide synthases (PKS) in animals and the complex phylogenomics of PKSs. Gene,

37

392, 47–58.

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., … Zhang, F. (2013).

Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.

Croce, J. C., & McClay, D. R. (2010). Dynamics of Delta/Notch signaling on

endomesoderm segregation in the sea urchin embryo. Development, 137, 83-91.

Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C. H., … Bolouri,

H. (2002). A provisional regulatory gene network for specification of endomesoderm in

the sea urchin embryo. Developmental Biology, 246, 162–190.

Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome

engineering with CRISPR‐Cas9. Science, 346, 1258096.

Duboc, V., Röttinger, E., Besnardeau, L., & Lepage, T. (2004). Nodal and BMP2/4

signaling organizes the oral-aboral axis of the sea urchin embryo. Developmental cell, 6,

397-410.

Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., & Sander, J. D.

(2013). High‐frequency off‐target mutagenesis induced by CRISPR‐Cas nucleases in

human cells. Nature Biotechnology, 31, 822–826.

Fujiwara, A., & Yasumasu, I. (1997). Does the respiratory rate in sea urchin embryos

increase during early development without proliferation of mitochondria? Development,

growth & differentiation, 39, 179-189.

Gaj, T., Gersbach, C. A. & Barbas, C. F. (2013) ZFN, TALEN, and CRISPR/Cas-based

methods for genome engineering. Trends in biotechnology, 31, 397-405.

38

Griffiths, M. (1965). A study of the synthesis of naphthaquinone pigments by the larvae

of two species of sea urchins and their reciprocal hybrids. Developmental Biology, 11,

433–447.

Hojo, M., Omi, A., Hamanaka, G., Shindo, K., Shimada, A., Kondo, M., … Takeda, H.

(2015). Unexpected link between polyketide synthase and calcium carbonate

biomineralization. Zoological Letters, 1, 3.

Hopwood, D. A. (1997). Genetic contributions to understanding polyketide synthases.

Chemical Reviews, 97, 2465–2498.

Hopwood, D. A., & Sherman, D. H. (1990). Molecular genetics of polyketides and its

comparison to fatty acid biosynthesis. Annual Review of Genetics, 24, 37–62.

Horvath, P. & Barrangou, R. (2010) CRISPR/Cas, the immune system of bacteria and

archaea. Science, 327, 167-170.

Hosoi, S., Sakuma, T., Sakamoto, N., & Yamamoto, T. (2014). Targeted mutagenesis in

sea urchin embryos using TALENs. Development, Growth and Differentiation, 56, 92–

97.

Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., …

Zhang, F. (2013). DNA targeting specificity of RNA‐guided Cas9 nucleases. Nature

Biotechnology, 31, 827–832.

Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA‐guided

editing of bacterial genomes using CRISPR‐Cas systems. Nature Biotechnology, 31,

233–239.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012).

39

A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity.

Science, 337, 816–821.

Kim, S., Kim, D., Cho, S. W., Kim, J., & Kim, J. S. (2014). Highly efficient RNA‐guided

genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome

Research, 24, 1012–1019.

Kinjo, S., Kiyomoto, M., Yamamoto, T., Ikeo, K., & Yaguchi, S. (2018). HpBase: A

genome database of a sea urchin, Hemicentrotus pulcherrimus. Development, Growth

and Differentiation, 60, 174–182.

Kotani, H., Taimatsu, K., Ohga, R., Ota, S., & Kawahara, A. (2015). Efficient multiple

genome modifications induced by the crRNAs, tracrRNA and Cas9 protein complex in

zebrafish. PLoS One, 10, e0128319.

Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S., & Qi, L. S. (2013).

CRISPR interference (CRISPRi) for sequence‐specific control of gene expression.

Nature Protocols, 8, 2180.

Lee, J. S., Kwak, S. J., Kim, J., Kim, A. K., Noh, H. M., Kim, J. S., & Yu, K. (2014).

RNA‐guided genome editing in Drosophila with the purified Cas9 protein. G3: Genes,

Genomes, Genetics, 4, 1291–1295.

Lee, P. Y., & Davidson, E. H. (2004). Expression of Spgatae, the Strongylocentrotus

purpuratus ortholog of vertebrate GATA4/5/6 factors. Gene Expression Patterns, 5, 161165.

Lee, P. Y., Nam, J., & Davidson, E. H. (2007). Exclusive developmental functions of

gatae cis-regulatory modules in the Strongylocentrorus purpuratus embryo.

Developmental biology, 307, 434-445.

40

Lin, C. Y., & Su, Y. H. (2016). Genome editing in sea urchin embryos by using a

CRISPR/Cas9 system. Developmental Biology, 409, 420–428.

Materna, S. C., Nam, J., & Davidson, E. H. (2010). High accuracy, high-resolution

prevalence measurement for the majority of locally expressed regulatory genes in early

sea urchin development. Gene Expression Patterns, 10, 177-184.

Materna, S. C., Ransick, A., Li, E., & Davidson, E. H. (2013). Diversification of oral and

aboral mesodermal regulatory states in pregastrular sea urchin embryos. Developmental

biology, 375, 92-104.

Mellott, D. O., Thisdelle, J., & Burke, R. D. (2017). Notch signaling patterns neurogenic

ectoderm and regulates the asymmetric division of neural progenitors in sea urchin

embryos. Development, 144, 3602–3611.

Minokawa, T., Rast, J. P., Arenas-Mena, C., Franco, C. B., & Davidson, E. H. (2004).

Expression patterns of four different regulatory genes that function during sea urchin

development. Gene Expression Patterns, 4, 449-456.

Naito, Y., Hino, K., Bono, H., & Ui-Tei, K. (2014). CRISPRdirect: software for

designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics, 31,

1120-1123.

Nakayama, T., Blitz, I. L., Fish, M. B., Odeleye, A. O., Manohar, S., Cho, K. W., &

Grainger, R. M. (2014). Cas9‐based genome editing in Xenopus tropicalis. In J. A.

Doudna & E. J. Sontheimer (Eds.), Methods in enzymology (Vol. 546, pp. 355–375).

Cambridge, MA: Academic Press.

Ochiai, H., Fujita, K., Suzuki, K. I., Nishikawa, M., Shibata, T., Sakamoto, N., &

Yamamoto, T. (2010). Targeted mutagenesis in the sea urchin embryo using zinc‐finger

41

nucleases. Genes to Cells, 15, 875–885.

Okabayashi, K., & Nakano, E. (1983). The cytochrome system of sea urchin eggs and

embryos. Archives of biochemistry and biophysics, 225, 271-278.

Oliveri, P., & Davidson, E. H. (2004). Gene regulatory network controlling embryonic

specification in the sea urchin. Current Opinion in Genetics and Development, 14, 351–

360.

Oliveri, P., Tu, Q., & Davidson, E. H. (2008). Global regulatory logic for specification

of an embryonic cell lineage. Proceedings of the National Academy of Sciences of the

United States of America, 105, 5955–5962.

Oulhen, N., Swartz, S. Z., Laird, J., Mascaro, A., & Wessel, G. M. (2017). Transient

translational quiescence in primordial germ cells. Development, 144, 1201–1210.

Oulhen, N., & Wessel, G. M. (2016). Albinism as a visual, in vivo guide for

CRISPR/Cas9 functionality in the sea urchin embryo. Molecular Reproduction and

Development, 83, 1046–1047.

Peterson, R. E., & McClay, D. R. (2005). A Fringe-modified Notch signal affects

specification of mesoderm and endoderm in the sea urchin embryo. Developmental

biology, 282, 126-137.

Ransick, A., & Davidson, E. H. (2006). cis-regulatory processing of Notch signaling

input to the sea urchin glial cells missing gene during mesoderm specification.

Developmental biology, 297, 587-602.

Ransick, A., & Davidson, E. H. (2012). Cis-regulatory logic driving glial cells missing:

self-sustaining circuitry in later embryogenesis. Developmental biology, 364, 259-267.

42

Rast, J. P. (2000). Transgenic manipulation of the sea urchin embryo. Methods in

Molecular Biology, 136, 365–373.

Sakane, Y., Iida, M., Hasebe, T., Fujii, S., Buchholz, D. R., Ishizuya‐Oka, A., … Ken‐

ichi, T. S. (2018). Functional analysis of thyroid hormone receptor beta in Xenopus

tropicalis founders using CRISPR‐Cas. Biology Open, 7, bio030338.

Sakane, Y., Suzuki, T. S., & Yamamoto, T. (2017). A simple protocol for loss‐of‐function

analysis in Xenopus tropicalis founders using the CRISPR‐cas system. In I. Hatada (Ed.),

Genome editing in animals (pp. 189–203). New York, NY: Humana Press.

Sea Urchin Genome Sequencing Consortium (2006). The genome of the sea urchin

Strongylocentrotus purpuratus. Science, 314, 941–952.

Shevidi, S., Uchida, A., Schudrowitz, N., Wessel, G. M., & Yajima, M. (2017). Single

nucleotide editing without DNA cleavage using CRISPR/Cas9‐deaminase in the sea

urchin embryo. Developmental Dynamics, 246, 1036–1046.

Shigeta, M., Sakane, Y., Iida, M., Suzuki, M., Kashiwagi, K., Kashiwagi, A., … Suzuki,

K. I. T. (2016). Rapid and efficient analysis of gene function using CRISPR‐Cas9 in

Xenopus tropicalis founders. Genes to Cells, 21, 755–771.

Smith, M. M., Cruz Smith, L., Cameron, R. A., & Urry, L. A. (2008). The larval stages

of the sea urchin, Strongylocentrotus purpuratus. Journal of Morphology, 269, 713–733.

Staunton, J., & Weissman, K. J. (2001). Polyketide biosynthesis: A millennium review.

Natural Product Reports, 18, 380–416.

Sung, Y. H., Kim, J. M., Kim, H. T., Lee, J., Jeon, J., Jin, Y., … Lee, H. W. (2014). Highly

efficient gene knockout in mice and zebrafish with RNA‐guided endonucleases. Genome

43

Research, 24, 125–131.

Yamaguchi, M., Kinoshita, T., & Ohba, Y. (1994). Fractionation of Micromeres,

Mesomeres, and Macromeres of 16‐cell Stage Sea Urchin Embryos by Elutriation.

Development, Growth & Differentiation, 36, 381-387.

Yamamoto, T., Kawamoto, R., Fujii, T., Sakamoto, N., & Shibata, T. (2007). DNA

variations within the sea urchin Otx gene enhancer. FEBS Letters, 581, 5234–5240

Zhu, X., Xu, Y., Yu, S., Lu, L., Ding, M., Cheng, J., … Meng, S. (2014). An efficient

genotyping method for genome‐modified animals and human cells generated with

CRISPR/Cas9 system. Scientific Reports, 4, 6420.

44

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る