リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Finite-element analysis and optimization of the mechanical properties of polyetheretherketone (PEEK) clasps for removable partial dentures.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Finite-element analysis and optimization of the mechanical properties of polyetheretherketone (PEEK) clasps for removable partial dentures.

彭 子祐 広島大学

2020.09.18

概要

of polyetheretherketone (PEEK), a high-performance thermoplastic polymer, to restorative dentistry, as a candidate for replacing
metallic components in dental prosthesis. The mechanical
properties of PEEK do not change during the sterilization process
and its elastic modulus is similar to those of human bone, enamel,
and dentin, suggesting it to be a suitable restorative material. PEEK
features stable chemical properties, and is biocompatible, wearresistant, stable at high temperatures, insoluble in water. This
material also presents low reactivity with other materials, is nonallergic, and has lower plaque affinity than other materials such as
metals and resins. Furthermore, PEEK can be processed using
computer-aided design and computer-aided manufacturing (CAD/
CAM), rendering it easily reproducible in the event of failure, and
easily relined in the case of resorption [9–16].
The combination of these unique mechanical and physical
properties renders PEEK a promising material for replacing metal
frameworks. To date, there have been few clinical studies that discuss
the application of PEEK as a framework material for RPDs [17,18];
nevertheless, according to its superior flexible properties, obtaining
the necessary retentive force and fatigue resistance will be key
challenges in the development of PEEK RPD clasps [19,20]. Therefore,
the objective of this study is to optimize PEEK clasp design in order to
provide the mechanical properties required by RPDs.
2. Materials and methods
2.1. Generating three-dimensional models
Three-dimensional (3D) models with clasp arms in the form of a
rod-shape were designed by SolidWorks 2013 (Dassault Systèmes
SolidWorks, Waltham, MA, USA). The 3D models were 15 mm in
length and the loading point was set at 3 mm from the tip (Fig. 1).
These models were classified into four groups based on thickness/
width ratios (Tb/Wb), and each group was then divided into three
subgroups according to the base width. ...

この論文で使われている画像

参考文献

[1] Baba K. Paradigm shifts in prosthodontics. J Prosthodont Res 2014;58:1–2.

[2] Joda T, Zarone F, Ferrari M. The complete digital workflow in fixed

prosthodontics: a systematic review. BMC Oral Health 2017;17:124.

[3] Hamann CP, DePaola LG, Rodgers PA. Occupation-related allergies in dentistry.

J Am Dent Assoc 2005;136:500–10.

[4] Poggio CE, Ercoli C, Rispoli L, Maiorana C, Esposito M. Metal-free materials for

fixed prosthodontic restorations. Cochrane Database Syst Rev 2017;12:

CD009606.

[5] Kishita C, Hamano T, Tsuru K, Nishi Y, Nagaoka E. Application of a glassreinforced composite material to clasps—the effects of immersion and

repeated loading. Dent Mater J 2004;23:528–32.

[6] Fueki K, Ohkubo C, Yatabe M, Arakawa I, Arita M, Ino S, et al. Clinical

application of removable partial dentures using thermoplastic resin-part I:

definition and indication of non-metal clasp dentures. J Prosthodont Res

2014;58:3–10.

[7] Tanimoto Y. Dental materials used for metal-free restorations: recent advances

and future challenges. J Prosthodont Res 2015;59:213–5.

[8] Urano S, Hotta Y, Miyazaki T, Baba K. Bending properties of Ce-TZP/A

nanocomposite clasps for removable partial dentures. Int J Prosthodont

2015;28:191–7.

[9] Schwitalla A, Müller WD. PEEK dental implants: a review of the literature. J

Oral Implant 2013;39:743–9.

[10] Stawarczyk B, Beuer F, Wimmer T, Jahn D, Sener B, Roos M, et al.

Polyetheretherketone — a suitable material for fixed dental prostheses? J

Biomed Mater Res B Appl Biomater 2013;101:1209–16.

[11] Ma R, Tang T. Current strategies to improve the bioactivity of PEEK. Int J Mol Sci

2014;15:5426–45.

[12] Garcia-Gonzalez D, Rusinek A, Jankowiak T, Arias A. Mechanical impact

behavior of polyether–ether–ketone (PEEK). Compos Struct 2015;124:88–99.

[13] Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res

2016;60:12–9.

[14] Skirbutis G, Dzingute_ A, Masiliunaite_ V, Šulcaite_ G, Žilinskas J. A review of

PEEK polymer’s properties and its use in prosthodontics. Stomatologija

2017;19:19–23.

[15] Wagner C, Stock V, Merk S, Schmidlin PR, Roos M, Eichberger M, et al.

Retention load of telescopic crowns with different taper angles between

cobalt-chromium and polyetheretherketone made with three different

manufacturing processes examined by pull-off test. J Prosthodont

2018;27:162–8.

[16] Arnold C, Hey J, Schweyen R, Setz JM. Accuracy of CAD-CAM-fabricated

removable partial dentures. J Prosthet Dent 2018;119:586–92.

[17] Zoidis P, Papathanasiou I, Polyzois G. The use of a modified Poly-Ether-EtherKetone (PEEK) as an alternative framework material for removable dental

prostheses. A clinical report. J Prosthodont 2016;25:580–4.

[18] Dawson JH, Hyde B, Hurst M, Harris BT, Lin WS. Polyetherketoneketone (PEKK),

a framework material for complete fixed and removable dental prostheses: a

clinical report. J Prosthet Dent 2018;119:867–72.

[19] Arda T, Arikan A. An in vitro comparison of retentive force and deformation of

acetal resin and cobalt-chromium clasps. J Prosthet Dent 2005;94:267–74.

[20] Meenakshi A, Gupta R, Bharti V, Sriramaprabu G, Prabhakar R. An evaluation of

retentive ability and deformation of acetal resin and cobalt-chromium clasps. J

Clin Diagn Res 2016;10:ZC37–41.

[21] Sato Y, Yuasa Y, Akagawa Y, Ohkawa S. An investigation of preferable taper and

thickness ratios for cast circumferential clasp arms using finite element

analysis. Int J Prosthodont 1995;8:392–7.

256

T.-Y. Peng et al. / journal of prosthodontic research 64 (2020) 250–256

[22] Carr AB, Brown DT. McCracken’s removable partial prosthodontics. 12th ed. St.

Louis: Elsevier/Mosby; 2010.

[23] Merk S, Wagner C, Stock V, Schmidlin PR, Roos M, Eichberger M, et al. Retention

load values of telescopic crowns made of Y-TZP and CoCr with Y-TZP secondary

crowns: impact of different taper angles. Materials 2016;9:354.

[24] Davenport JC, Basker RM, Heath JR, Ralph JP, Glantz PO. Prosthetics: retention.

Br Dent J 2000;189:646–57.

[25] Tannous F, Steiner M, Shahin R, Kern M. Retentive forces and fatigue resistance

of thermoplastic resin clasps. Dent Mater J 2012;28:273–8.

[26] Wang L-F, Shi L-Y. Simulation optimization: a review on theory and

applications. Acta Autom Sin 2013;39:1957–68.

[27] Su J, Chen Z, Wang Z, Xi G. An adaptive finite element method for shape

optimization in stationary incompressible flow with damping. Int J Numer

Anal Model 2014;5:79–96.

[28] Amaran S, Sahinidis NV, Sharda B, Bury SJ. Simulation optimization: a review

of algorithms and applications. 4OR-Q J Oper Res 2014;12:301–33.

[29] Fitton JS, Davies EH, Howlett JA, Pearson GJ. The physical properties of a

polyacetal denture resin. Clin Mater 1994;17:125–9.

[30] Turner JW, Radford DR, Sherriff M. Flexural properties and surface finishing of

acetal resin denture clasps. J Prosthodont 1999;8:188–95.

[31] Rabinowitz S, Beardmore P. Cyclic deformation and fracture of polymers. J

Mater Sci 1974;9:81–99.

[32] Frank RP, Nicholls JI. A study of the flexibility of wrought wire clasps. J Prosthet

Dent 1981;45:259–67.

[33] Ahmad I, Sherriff M, Waters NE. The effect of reducing the number of clasps on

removable partial denture retention. J Prosthet Dent 1992;68:928–33.

[34] Soo S, Leung T. Hidden clasps versus C clasps and I bars: a comparison of

retention. J Prosthet Dent 1996;75:622–5.

[35] Helal MA, Baraka OA, Sanad ME, Ludwig K, Kern M. Effects of long-term

simulated RPD clasp attachment/detachment on retention loss and wear for

two clasp types and three abutment material surfaces. J Prosthodont

2012;21:370–7.

[36] Bridgeman JT, Marker VA, Hummel SK, Benson BW, Pace LL. Comparison of

titanium and cobalt-chromium removable partial denture clasps. J Prosthet

Dent 1997;78:187–93.

[37] Savitha PN, Lekha KP, Nadiger RK. Fatigue resistance and flexural behavior of

acetal resin and chrome cobalt removable partial denture clasp: an in vitro

study. Eur J Prosthodont Restor Dent 2015;3:71–6.

[38] Rodrigues RC, Ribeiro RF, de Mattos Mda G, Bezzon OL. Comparative study of

circumferential clasp retention force for titanium and cobalt-chromium

removable partial dentures. J Prosthet Dent 2002;88:290–6.

[39] Mine K, Fueki K, Igarashi Y. Microbiological risk for periodontitis of abutment

teeth in patients with removable partial dentures. J Oral Rehabil

2009;36:696–702.

[40] Shimura Y, Wadachi J, Nakamura T, Mizutani H, Igarashi Y. Influence of

removable partial dentures on the formation of dental plaque on abutment

teeth. J Prosthodont Res 2010;54:29–35.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る