リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Measurement of Shoulder Abduction Angle with Posture Estimation Artificial Intelligence Model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Measurement of Shoulder Abduction Angle with Posture Estimation Artificial Intelligence Model

Kusunose, Masaya Inui, Atsuyuki Nishimoto, Hanako Mifune, Yutaka Yoshikawa, Tomoya Shinohara, Issei Furukawa, Takahiro Kato, Tatsuo Tanaka, Shuya Kuroda, Ryosuke 神戸大学

2023.07

概要

Substantial advancements in markerless motion capture accuracy exist, but discrepancies persist when measuring joint angles compared to those taken with a goniometer. This study integrates machine learning techniques with markerless motion capture, with an aim to enhance this accuracy. Two artificial intelligence-based libraries—MediaPipe and LightGBM—were employed in executing markerless motion capture and shoulder abduction angle estimation. The motion of ten healthy volunteers was captured using smartphone cameras with right shoulder abduction angles ranging from 10° to 160°. The cameras were set diagonally at 45°, 30°, 15°, 0°, −15°, or −30° relative to the participant situated at a distance of 3 m. To estimate the abduction angle, machine learning models were developed considering the angle data from the goniometer as the ground truth. The model performance was evaluated using the coefficient of determination R2 and mean absolute percentage error, which were 0.988 and 1.539%, respectively, for the trained model. This approach could estimate the shoulder abduction angle, even if the camera was positioned diagonally with respect to the object. Thus, the proposed models can be utilized for the real-time estimation of shoulder motion during rehabilitation or sports motion.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Green, S.; Buchbinder, R.; Glazier, R.; Forbes, A. Systematic review of randomized controlled trials of interventions for painful

shoulder: Selection criteria, outcome assessment, and efficacy. BMJ 1998, 316, 354–360. [CrossRef]

Muir, S.W.; Corea, C.L.; Beaupre, L. Evaluating change in clinical status: Reliability and measures of agreement for the assessment

of glenohumeral range of motion. N. Am. J. Sports Phys. Ther. 2010, 5, 98–110. [PubMed]

Vecchio, P.C.; Kavanagh, R.T.; Hazleman, B.L.; King, R.H. Community survey of shoulder disorders in the elderly to assess the

natural history and effects of treatment. Ann. Rheum. Dis. 1995, 54, 152–154. [CrossRef]

Milanese, S.; Gordon, S.J.; Buettner, P.; Flavell, C.; Ruston, S.; Coe, D.; O’Sullivan, W.; McCormack, S. Reliability and concurrent

validity of knee angle measurement: Smart phone app versus universal goniometer used by experienced and novice clinicians.

Man. Ther. 2014, 19, 569–574. [CrossRef] [PubMed]

Brosseau, L.; Tousignant, M.; Budd, J.; Chartier, N.; Duciaume, L.; Plamondon, S.; O’Sullivan, J.P.; O’Donoghue, S.; Balmer, S.

Intratester and intertester reliability and criterion validity of the parallelogram and universal goniometers for active knee flexion

in healthy subjects. Physiother. Res. Int. 1997, 2, 150–166. [CrossRef]

El-Zayat, B.F.; Efe, T.; Heidrich, A.; Wolf, U.; Timmesfeld, N.; Heyse, T.J.; Lakemeier, S.; Fuchs-Winkelmann, S.; Schofer, M.D.

Objective assessment of shoulder mobility with a new 3D gyroscope—A validation study. BMC Musculoskelet Disord. 2011, 12, 168.

[CrossRef]

El-Zayat, B.F.; Efe, T.; Heidrich, A.; Anetsmann, R.; Timmesfeld, N.; Fuchs-Winkelmann, S.; Schofer, M.D. Objective assessment,

repeatability, and agreement of shoulder ROM with a 3D gyroscope. BMC Musculoskelet Disord. 2013, 14, 72. [CrossRef] [PubMed]

Cheng, S.Y.; Trivedi, M.M. Human posture estimation using voxel data for “Smart” airbag systems: Issues and framework. In

Proceedings of the IEEE Intelligent Vehicles Symposium, Parma, Italy, 14–17 June 2004; pp. 84–89.

Yahya, M.; Shah, J.A.; Kadir, K.A.; Yusof, Z.M.; Khan, S.; Warsi, A. Motion capture sensing techniques used in human upper limb

motion: A review. Sensor Rev. 2019, 39, 504–514. [CrossRef]

Wu, G.; van der Helm, F.C.T.; Veeger, H.E.J.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.;

Wang, X.; et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint

motion—Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005, 38, 981–992. [CrossRef]

Picerno, P. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches.

Gait Posture. 2017, 51, 239–246. [CrossRef]

Parel, I.; Cutti, A.G.; Fiumana, G.; Porcellini, G.; Verni, G.; Accardo, A.P. Ambulatory measurement of the scapulohumeral

rhythm: Intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012, 35, 636–640.

[CrossRef]

Yamaura, K.; Mifune, Y.; Inui, A.; Nishimoto, H.; Kataoka, T.; Kurosawa, T.; Mukohara, S.; Hoshino, Y.; Niikura, T.; Nagamune, K.;

et al. Accuracy and reliability of tridimensional electromagnetic sensor system for elbow ROM measurement. J. Orthop. Surg. Res.

2022, 17, 60. [CrossRef]

Mukohara, S.; Mifune, Y.; Inui, A.; Nishimoto, H.; Kurosawa, T.; Yamaura, K.; Yoshikawa, T.; Shinohara, I.; Hoshino, Y.; Nagamune,

K.; et al. A new quantitative evaluation system for distal radioulnar joint instability using a three-dimensional electromagnetic

sensor. J. Orthop. Surg. Res. 2021, 16, 452. [CrossRef]

Morton, N.A.; Maletsky, L.P.; Pal, S.; Laz, P.J. Effect of variability in anatomical landmark location on knee kinematic description.

J. Orthop. Res. 2007, 25, 1221–1230. [CrossRef] [PubMed]

Faisal, A.I.; Majumder, S.; Mondal, T.; Cowan, D.; Naseh, S.; Deen, M.J. Monitoring Methods of Human Body Joints: State-of-theArt and Research Challenges. Sensors 2019, 19, 2629. [CrossRef] [PubMed]

Stenum, J.; Cherry-Allen, K.M.; Pyles, C.O.; Reetzke, R.D.; Vignos, M.F.; Roemmich, R.T. Applications of Pose Estimation in

Human Health and Performance across the Lifespan. Sensors 2021, 21, 7315. [CrossRef]

Toshev, A.; Szegedy, C. DeepPose: Human pose estimation via deep neural networks. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1653–1660.

Pishchulin, L.; Insafutdinov, E.; Tang, S.; Andres, B.; Andriluka, M.; Gehler, P.; Schiele, B. DeepCut: Joint Subset Partition and

Labeling for Multi Person Pose Estimation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4929–4937.

Insafutdinov, E.; Andriluka, M.; Pishchulin, L.; Tang, S.; Levinkov, E.; Andres, B.; Schiele, B. ArtTrack: Articulated Multi-Person

Tracking in the Wild. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI,

USA, 21–26 July 2017; pp. 6457–6465.

Sensors 2023, 23, 6445

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

15 of 15

Martinez, G.H.; Raaj, Y.; Idrees, H.; Xiang, D.; Joo, H.; Simon, T.; Sheikh, Y. Single-network whole-body pose estimation. In

Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019;

pp. 6982–6991.

Drazan, J.F.; Phillips, W.T.; Seethapathi, N.; Hullfish, T.J.; Baxter, J.R. Moving outside the lab: Markerless motion capture accurately

quantifies sagittal plane kinematics during the vertical jump. J. Biomech. 2021, 125, 110547. [CrossRef]

Tanaka, R.; Ishikawa, Y.; Yamasaki, T.; Diez, A. Accuracy of classifying the movement strategy in the functional reach test using a

markerless motion capture system. J. Med. Eng. Technol. 2019, 43, 133–138. [CrossRef]

Wochatz, M.; Tilgner, N.; Mueller, S.; Rabe, S.; Eichler, S.; John, M.; Völler, H.; Mayer, F. Reliability and validity of the Kinect V2

for the assessment of lower extremity rehabilitation exercises. Gait. Posture 2019, 70, 330–335. [CrossRef] [PubMed]

Yeung, L.-F.; Yang, Z.; Cheng, K.C.-C.; Du, D.; Tong, R.K.-Y. Effects of camera viewing angles on tracking kinematic gait patterns

using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2. Gait Posture 2021, 87, 19–26. [CrossRef]

Qu, Y.; Hwang, J.; Lee, K.S.; Jung, M.C. The effect of camera location on observation-based posture estimation. Ergonomics 2012,

55, 885–897. [CrossRef]

Bao, S.; Howard, N.; Spielholz, P.; Silverstein, B. Two posture analysis approaches and their application in a modified rapid upper

limb assessment evaluation. Ergonomics 2007, 50, 2118–2136. [CrossRef] [PubMed]

Armitano-Lago, C.; Willoughby, D.; Kiefer, A.W. A SWOT Analysis of Portable and Low-Cost Markerless Motion Capture Systems

to Assess Lower-Limb Musculoskeletal Kinematics in Sport. Front. Sports Act. Living. 2022, 3, 809898. [CrossRef]

Lam, W.W.T.; Tang, Y.M.; Fong, K.N.K. A systematic review of the applications of markerless motion capture (MMC) technology

for clinical measurement in rehabilitation. J. Neuro Eng. Rehabil. 2023, 20, 57. [CrossRef]

Gauci, M.O.; Olmos, M.; Cointat, C.; Chammas, P.E.; Urvoy, M.; Murienne, A.; Bronsard, N.; Gonzalez, J.F. Validation of the

shoulder range of motion software for measurement of shoulder ranges of motion in consultation: Coupling a red/green/bluedepth video camera to artificial intelligence. Int. Orthop. 2023, 47, 299–307. [CrossRef]

Gritsenko, V.; Dailey, E.; Kyle, N.; Taylor, M.; Whittacre, S.; Swisher, A.K. Feasibility of using low-cost motion capture for

automated screening of shoulder motion limitation after breast cancer surgery. PLoS ONE 2015, 10, e0128809. [CrossRef]

Beshara, P.; Chen, J.F.; Read, A.C.; Lagadec, P.; Wang, T.; Walsh, W.R. The Reliability and validity of wearable inertial sensors

coupled with the microsoft kinect to measure shoulder range-of-motion. Sensors 2020, 20, 7238. [CrossRef]

Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7291–7299.

Bazarevsky, V.; Grishchenko, I.; Raveendran, K.; Zhu, T.; Zhang, F.; Grundmann, M. Blazepose: On-device real-time body pose

tracking. arXiv 2020, arXiv:2006.10204.

Kishore, D.M.; Bindu, S.; Manjunath, N.K. Estimation of Yoga Postures Using Machine Learning Techniques. Int. J. Yoga 2022, 15,

137–143. [CrossRef] [PubMed]

Lafayette, T.B.G.; Kunst, V.H.L.; Melo, P.V.S.; Guedes, P.O.; Teixeira, J.M.X.N.; Vasconcelos, C.R.; Teichrieb, V.; da Gama, A.E.F.

Validation of Angle Estimation Based on Body Tracking Data from RGB-D and RGB Cameras for Biomechanical Assessment.

Sensors 2022, 23, 3. [CrossRef]

Clarkson, H.M. Joint Motion and Function Assessment: A Research Based Practical Guide; Lippincott Williams & Wilkins: Philadelphia,

PA, USA, 2005; pp. 60–61.

Yan, J.; Xu, Y.; Cheng, Q.; Jiang, S.; Wang, Q.; Xiao, Y.; Ma, C.; Yan, J.; Wang, X. LightGBM: Accelerated genomically designed crop

breeding through ensemble learning. Genome. Biol. 2021, 22, 271. [CrossRef] [PubMed]

Ji, P.; Wang, X.; Ma, F.; Feng, J.; Li, C. A 3D Hand Attitude Estimation Method for Fixed Hand Posture Based on Dual-View RGB

Images. Sensors 2022, 22, 8410. [CrossRef] [PubMed]

Fisher, A.; Rudin, C.; Dominici, F. All Models are Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an

Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res. 2019, 20, 177. [PubMed]

Lundberg, S.M.; Lee, S. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural

Information Processing Systems 30 (NIPS), Long Beach, CA, USA, 4–9 December 2017.

Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE,

MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [CrossRef]

Fusca, M.; Negrini, F.; Perego, P.; Magoni, L.; Molteni, F.; Andreoni, G. Validation of a wearable IMU system for gait analysis:

Protocol and application to a new system. Appl. Sci. 2018, 8, 1167. [CrossRef]

Sheu, R.K.; Pardeshi, M.S. A Survey on Medical Explainable AI (XAI): Recent Progress, Explainability Approach, Human

Interaction and Scoring System. Sensors 2022, 22, 8068. [CrossRef]

American Academy of Orthopaedic Surgeons. Joint Motion: Method of Measuring and Recording; American Academy of Orthopaedic

Surgeons: Chicago, IL, USA, 1965.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る