リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Assessment of mouse VEGF neutralization by ranibizumab and aflibercept」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Assessment of mouse VEGF neutralization by ranibizumab and aflibercept

ICHIYAMA Yusuke 10749021 0000-0002-9134-9886 MATSUMOTO Riko 0000-0002-9650-9535 OBATA Shumpei 90814848 0000-0001-6120-2392 SAWADA Osamu 00378465 0000-0001-9752-0499 SAISHIN Yoshitsugu 30379193 0000-0001-9645-3837 KAKINOKI Masashi 80531516 SAWADA Tomoko 0000-0002-9828-4288 OHJI Masahito 90252650 滋賀医科大学

2022.12.21

概要

Purpose:
To assess the interaction between ranibizumab, aflibercept, and mouse vascular endothelial growth factor (VEGF), both in vivo and in vitro.

Methods:
In vivo, the effect of intravitreal injection of ranibizumab and aflibercept on oxygen induced retinopathy (OIR) and the effect of multiple intraperitoneal injections of ranibizumab and aflibercept on neonatal mice were assessed. In vitro, the interaction of mouse VEGF-A with aflibercept or ranibizumab as the primary antibody was analyzed by Western blot.

Results:
In both experiments using intravitreal injections in OIR mice and multiple intraperitoneal injections in neonatal mice, anti-VEGF effects were observed with aflibercept, but not with ranibizumab. Western blot analysis showed immunoreactive bands for mouse VEGF-A in the aflibercept-probed blot, but not in the ranibizumab-probed blot.

Conclusions:
Aflibercept but not ranibizumab interacts with mouse VEGF, both in vivo and in vitro. When conducting experiments using anti-VEGF drugs in mice, aflibercept is suitable, but ranibizumab is not.

この論文で使われている画像

参考文献

1. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, et al; ANCHOR Study Group. Ranibizumab versus verteporfin for neovascular agerelated macular degeneration. N Engl J Med. 2006 Oct 5; 355(14):1432–1444.

2. CATT Research Group, Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL, et al. Ranibizumab and bevacizumab for neovascular agerelated macular degeneration. N Engl J Med. 2011 May 19; 364 (20):1897–1908. https://doi.org/10.1056/NEJMoa1102673 PMID: 21526923

3. Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012 Dec; 119(12):2537– 48. https://doi.org/10.1016/j.ophtha.2012.09.006 PMID: 23084240

4. Diabetic Retinopathy Clinical Research Network, Wells JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 2015 Mar 26; 372(13):1193–203. https://doi.org/10.1056/NEJMoa1414264 PMID: 25692915

5. Jampol LM, Glassman AR, Sun J. Evaluation and Care of Patients with Diabetic Retinopathy. N Engl J Med. 2020 Apr 23; 382(17):1629–1637. https://doi.org/10.1056/NEJMra1909637 PMID: 32320570

6. Campochiaro PA, Heier JS, Feiner L, Gray S, Saroj N, Rundle AC, et al. Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010 Jun; 117(6):1102–1112. https://doi.org/10.1016/j.ophtha.2010.02.021 PMID: 20398941

7. Brown DM, Campochiaro PA, Singh RP, Li Z, Gray S, Saroj N, et al. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010 Jun; 117(6):1124–1133. https://doi.org/10.1016/j.ophtha.2010.02.022 PMID: 20381871

8. Scott IU, Campochiaro PA, Newman NJ, Biousse V. Retinal vascular occlusions. Lancet. 2020 Dec 12; 396(10266):1927–1940. https://doi.org/10.1016/S0140-6736(20)31559-2 PMID: 33308475

9. Cheung CMG, Arnold JJ, Holz FG, Park KH, Lai TYY, Larsen M, et al. Myopic Choroidal Neovascularization: Review, Guidance, and Consensus Statement on Management. Ophthalmology. 2017 Nov; 124 (11):1690–1711. https://doi.org/10.1016/j.ophtha.2017.04.028 PMID: 28655539

10. Mintz-Hittner HA, Kennedy KA, Chuang AZ, BEAT-ROP Cooperative Group. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med 2011 Feb 17; 364:603–615. https://doi. org/10.1056/NEJMoa1007374 PMID: 21323540

11. Stahl A, Lepore D, Fielder A, Fleck B, Reynolds JD, Chiang MF, et al. Ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW): an openlabel randomised controlled trial. The Lancet 2019 Oct 26; 394:1551–1559. https://doi.org/10.1016/ S0140-6736(19)31344-3 PMID: 31522845

12. Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016 Jun; 15(6):385–403. https://doi.org/10.1038/nrd.2015.17 PMID: 26775688

13. Bock F, Onderka J, Dietrich T, Bachmann B, Kruse FE, Paschke M, et al. Bevacizumab as a potent inhibitor of inflammatory corneal angiogenesis and lymphangiogenesis. Invest Ophthalmol Vis Sci. 2007 Jun; 48(6):2545–52. https://doi.org/10.1167/iovs.06-0570 PMID: 17525183

14. Rabinowitz R, Priel A, Rosner M, Pri-Chen S, Spierer A. Avastin treatment reduces retinal neovascularization in a mouse model of retinopathy of prematurity. Curr Eye Res. 2012 Jul; 37(7):624–9. https://doi. org/10.3109/02713683.2012.669003 PMID: 22578253

15. Akkoyun I, Karabay G, Haberal N, Dagdeviren A, Yilmaz G, Oto S, et al. Structural consequences after intravitreal bevacizumab injection without increasing apoptotic cell death in a retinopathy of prematurity mouse model. Acta Ophthalmol. 2012 Sep; 90(6):564–70. https://doi.org/10.1111/j.1755-3768.2010. 01963.x PMID: 20698831

16. Feng F, Cheng Y, Liu QH. Bevacizumab treatment reduces retinal neovascularization in a mouse model of retinopathy of prematurity. Int J Ophthalmol. 2014 Aug 18; 7(4):608–13. https://doi.org/10. 3980/J.ISSN.2222-3959.2014.04.04 PMID: 25161929

17. Bucher F, Parthasarathy A, Bergua A, Onderka J, Regenfuss B, Cursiefen C, et al. Topical Ranibizumab inhibits inflammatory corneal hem- and lymphangiogenesis. Acta Ophthalmol. 2014 Mar: 92 (2):143–148. https://doi.org/10.1111/j.1755-3768.2012.02525.x PMID: 22994268

18. Jiang C, Ruan L, Zhang J, Huang X. Inhibitory effects on retinal neovascularization by ranibizumab and sTie2-Fc in an oxygen-induced retinopathy mouse model. Curr Eye Res. 2018 Sep; 43(9):1190–1198. https://doi.org/10.1080/02713683.2018.1484144 PMID: 29857790

19. Yan Z, Shi H, Zhu R, Li L, Qin B, Kang L, et al. Inhibition of YAP ameliorates choroidal neovascularization via inhibiting endothelial cell proliferation. Molecular Vision 2018 Jan 31; 24:83–93. PMID: 29422766

20. Li W, Zhang W, Zhang C, Zhu C, Yi X, Zhou Y, et al. Soluble Tei2 fusion protein inhibits retinopathy of prematurity occurrence via regulation of the Ang/Tie2 pathway. Exp Ther Med. 2019 Jul; 18(1):614– 620. https://doi.org/10.3892/etm.2019.7608 PMID: 31258697

21. Chen W, Zhang J, Zhang P, Hu F, Jiang T, Gu J, et al. Role of TLR4-MAP4K4 signaling pathway in models of oxygen-induced retinopathy. FASEB J. 2019 Mar; 33(3):3451–3464. https://doi.org/10.1096/ fj.201801086RR PMID: 30475644

22. Xie F, Zhang X, Luo W, Ge H, Sun D, Liu P. Notch signaling pathway is involved in bFGF-induced corneal lymphangiogenesis and hemangiogenesis. J Ophthalmol. 2019, 9613923. https://doi.org/10.1155/ 2019/9613923 PMID: 31531237

23. Zhong DJ, Zhang Y, Zhang S, Ge YY, Tong M, Feng Y, et al. Adenosine A 2A receptor antagonism protects against hyperoxia-induced retinal vascular loss via cellular proliferation. FASEB J. 2021 Sep; 35 (9):e21842. https://doi.org/10.1096/fj.202100414RR PMID: 34418159

24. Saishin Y, Saishin Y, Takahashi K, Lima e Silva R, Hylton D, Rudge JS, et al. VEGF-TRAP(R1R2) suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J Cell Physiol. 2003 May; 195(2):241–8. https://doi.org/10.1002/jcp.10246 PMID: 12652651

25. Tokunaga CC, Mitton KP, Dailey W, Massoll C, Roumayah K, Guzman E, et al. Effects of anti-VEGF treatment on the recovery of the developing retina following oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 2014 Mar 28; 55(3):1884–92. https://doi.org/10.1167/iovs.13-13397 PMID: 24550366

26. Tang F, LeBlanc ME, Wang W, Liang D, Chen P, Chou TH, et al. Anti-secretogranin III therapy of oxygen-induced retinopathy with optimal safety. Angiogenesis. 2019 Aug; 22(3):369–382. https://doi.org/ 10.1007/s10456-019-09662-4 PMID: 30644010

27. Amin SM, Gonzalez A, Guevara J, Bolch C, Andersen L, Smith WC, et al. Efficacy of Aflibercept Treatment and Its Effect on the Retinal Perfusion in the Oxygen-Induced Retinopathy Mouse Model of Retinopathy of Prematurity. Ophthalmic Res. 2020; 64(1):91–98. https://doi.org/10.1159/000509380 PMID: 32535604

28. Ichiyama Y, Obata S, Saishin Y, Sawada O, Kakinoki M, Sawada T, et al. The systemic antiangiogenic effect of intravitreal aflibercept injection in a mouse model of retinopathy of prematurity. FASEB J. 2021 Mar; 35(3):e21390. https://doi.org/10.1096/fj.202002414R PMID: 33566381

29. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an antiVEGF antibody for treating cancer. Nat Rev Drug Discov. 2004 May; 3(5):391–400. https://doi.org/10. 1038/nrd1381 PMID: 15136787

30. Yu L, Wu X, Cheng Z, Lee CV, LeCouter J, Campa C, et al. Interaction between bevacizumab and murine VEGF-A: a reassessment. Invest Ophthalmol Vis Sci. 2008 Feb; 49(2):522–7. https://doi.org/ 10.1167/iovs.07-1175 PMID: 18234994

31. Ferrara N, Damico L, Shams N, Lowman H, Kim R. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. RETINA. 2006 Oct; 26(8):859–70. https://doi.org/10.1097/01.iae.0000242842.14624.e7 PMID: 17031284

32. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA. 2002 Aug 20; 99(17):11393–8. https://doi.org/10. 1073/pnas.172398299 PMID: 12177445

33. Takahashi M, Misaki M, Shibata S, Iga T, Shindo T, Tai-Nagara I, et al. Macrophages fine-tune pupil shape during development. Dev Biol. 2020 Aug 15; 464(2):137–144. https://doi.org/10.1016/j.ydbio. 2020.06.004 PMID: 32565279

34. Okabe K, Kobayashi S, Yamada T, Kurihara T, Tai-Nagara I, Miyamoto T, et al. Neurons limit angiogenesis by titrating VEGF in retina. Cell. 2014 Oct 23; 159(3):584–96. https://doi.org/10.1016/j.cell.2014. 09.025 PMID: 25417109

35. Ichiyama Y, Sawada T, Ito Y, Kakinoki M, Ohji M. Optical coherence tomography angiography reveals blood flow in choroidal neovascular membrane in remission phase of neovascular age-related macular degeneration. Retina. 2017 Apr; 37(4):724–730. https://doi.org/10.1097/IAE.0000000000001576 PMID: 28248824

36. Baffert F, Le T, Sennino B, Thurston G, Kuo CJ, Hu-Lowe D, et al. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am J Physiol Heart Circ Physiol. 2006 Feb; 290(2):H547–59. https://doi.org/10.1152/ajpheart.00616.2005 PMID: 16172161

37. Mancuso MR, Davis R, Norberg SM, O’Brien S, Sennino B, Nakahara T, et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest. 2006 Oct; 116(10):2610–21. https://doi.org/10. 1172/JCI24612 PMID: 17016557

38. Eilken HM, Die´guez-Hurtado R, Schmidt I, Nakayama M, Jeong HW, Arf H, et al. Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1. Nat Commun. 2017 Nov 17; 8(1):1574. https:// doi.org/10.1038/s41467-017-01738-3 PMID: 29146905

39. Hn Park, Qazi Y, Tan C, Jabbar SB, Cao Y, Schmid G, et al. Assessment of axial length measurement in mouse eyes. Optom Vis Sci. 2012 Mar; 89(3):296–303.

40. Liu Liming. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. 2018 Jan; 9(1):15–32. https://doi.org/10.1007/s13238-017-0408-4 PMID: 28421387

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る