リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Functional Analysis of Cancer-associated IDH mutations」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Functional Analysis of Cancer-associated IDH mutations

劉, 洵 東京大学 DOI:10.15083/0002006954

2023.03.24

概要

[課程-2]
審査の結果の要旨
氏名 劉



In present study, to elucidate molecular mechanism(s) associated with isocitrate
dehydrogenase 1 and 2 (IDH1/2) mutations, mouse embryonic fibroblasts (MEF) cells
stably expressing cancer-associated IDH1R132C or IDH2R172S were established and the
alteration of metabolic characteristics in MEF cells was analyzed. In addition, mice with
liver-specific expression of the IDH1 or IDH2 mutants were generated. The development
of liver tumors was further investigated by crossing liver-specific IDH1 or IDH2 mutation
knockin mice with conditional KrasG12D mutation knockin mice. Following results were
found by this research.
1. Increased 2-hydroxyglutarate (2-HG) accumulation and repressed cellular
proliferation were found in MEF cells expressing cancer-associated IDH1/2
mutations.
2. RNA-seq identified 117 up/down-regulated genes overlapped between MEF cells
expressing the IDH2 mutant and treated with 2-HG. Gene set enrichment analysis
showed enrichment of signatures corresponding to “PI3K/Akt/mTOR signaling” and
“glycolysis” in both MEF-2MUT and 2-HG treated MEF cells.
3. KEGG pathway analysis revealed that genes correlated with “pathway in cancer”,
including ptgs2, lamc2 and slc2a1, were up-regulated by cancer-associated IDH2
mutant and 2-HG. Glucose transporter 1 (Glut1), encoded by slc2a1 gene, was
identified as a target molecule induced by the IDH1/2 mutants and 2-HG.
4. Glucose uptake and lactate production were enhanced by the IDH1/2 mutants,
suggesting the enhancement of glycolysis.
5. PI3K/Akt/mTOR pathway was involved in the regulation of Glut1 induction by
cancer-associated IDH1/2 mutations.
6. Hif1α was also involved in the regulation of Glut1 by the IDH1/2 mutations. Elevated
Hif1α expression induced by IDH1/2 mutants was regulated by mTORC1 on both
mRNA and protein level.
7. Significantly shorter survival time and increased liver tumor burden were found in
AKIDH1mut and AKIDH2mut mice compared with AK mice. IDH2R172S mutation may
exert stronger effect on the development of ICC than IDH1R132C mutation in the

context of oncogenic Kras-induced murine liver tumorigenesis.
8. Expression of Glut1 was enhanced by the IDH1/2 mutants in murine liver, especially
in tumorous tissues.
Collectively, this doctoral thesis corroborated that oncogenic IDH1/2 mutants
induced Glut1 expression through a PI3K/Akt/mTOR/Hif1α axis, and thus altered cellular
glucose metabolism in MEF cells. Liver-specific expression of the IDH1/2 mutations in
mice enhanced the development of liver tumors especially that of ICC-like tumors in the
background of oncogenic Kras mutation. Present research elucidated GLUT1 may be
useful as a biomarker of tumors harboring IDH1/2 mutations and may contribute to the
understanding of molecular mechanisms underlying liver tumors with IDH1/2 mutations,
and the development of strategies to treat or prevent ICC.
よって本論文は博士( 医学 )の学位請求論文として合格と認められる。

この論文で使われている画像

参考文献

1.

Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin

VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE,

Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su

SM, Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature

462, 739-44 (2009).

2.

Yang H, Ye D, Guan KL, Xiong Y, IDH1 and IDH2 mutations in tumorigenesis:

mechanistic insights and clinical perspectives. Clin Cancer Res 18, 5562-71

(2012).

3.

Dang L, Yen K, Attar EC, IDH mutations in cancer and progress toward

development of targeted therapeutics. Ann Oncol 27, 599-608 (2016).

4.

Tommasini-Ghelfi S, Murnan K, Kouri FM, Mahajan AS, May JL, Stegh AH,

Cancer-associated mutation and beyond: The emerging biology of isocitrate

dehydrogenases in human disease. Sci Adv 5, eaaw4543 (2019).

5.

Cairns RA, Mak TW, Oncogenic isocitrate dehydrogenase mutations:

mechanisms, models, and clinical opportunities. Cancer Discov 3, 730-41

(2013).

6.

Waitkus MS, Diplas BH, Yan H, Biological Role and Therapeutic Potential of

IDH Mutations in Cancer. Cancer Cell 34, 186-95 (2018).

7.

Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P,

64

Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S,

Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Hartigan J, Smith

DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD,

Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE,

Kinzler KW, An integrated genomic analysis of human glioblastoma multiforme.

Science 321, 1807-12 (2008).

8.

Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, BatinicHaberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon

J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD, IDH1 and IDH2

mutations in gliomas. N Engl J Med 360, 765-73 (2009).

9.

Reitman ZJ, Yan H, Isocitrate dehydrogenase 1 and 2 mutations in cancer:

alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 102, 93241 (2010).

10.

Losman JA, Kaelin WG, What a difference a hydroxyl makes: mutant IDH, (R)2-hydroxyglutarate, and cancer. Genes Dev 27, 836-52 (2013).

11.

M Gagné L, Boulay K, Topisirovic I, Huot M, Mallette FA, Oncogenic

Activities of IDH1/2 Mutations: From Epigenetics to Cellular Signaling. Trends

Cell Biol 27, 738-52 (2017).

12.

Clark O, Yen K, Mellinghoff IK, Molecular Pathways: Isocitrate

Dehydrogenase Mutations in Cancer. Clin Cancer Res 22, 1837-42 (2016).

13.

Amary MF, Bacsi K, Maggiani F, Damato S, Halai D, Berisha F, Pollock R,

65

O'Donnell P, Grigoriadis A, Diss T, Eskandarpour M, Presneau N, Hogendoorn

PC, Futreal A, Tirabosco R, Flanagan AM, IDH1 and IDH2 mutations are

frequent events in central chondrosarcoma and central and periosteal

chondromas but not in other mesenchymal tumours. J Pathol 224, 334-43

(2011).

14.

Pansuriya TC, van Eijk R, d'Adamo P, van Ruler MA, Kuijjer ML, Oosting J,

Cleton-Jansen AM, van Oosterwijk JG, Verbeke SL, Meijer D, van Wezel T,

Nord KH, Sangiorgi L, Toker B, Liegl-Atzwanger B, San-Julian M, Sciot R,

Limaye N, Kindblom LG, Daugaard S, Godfraind C, Boon LM, Vikkula M,

Kurek KC, Szuhai K, French PJ, Bovée JV, Somatic mosaic IDH1 and IDH2

mutations are associated with enchondroma and spindle cell hemangioma in

Ollier disease and Maffucci syndrome. Nat Genet 43, 1256-61 (2011).

15.

Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt

DC, Fulton RS, Delehaunty KD, McGrath SD, Fulton LA, Locke DP, Magrini

VJ, Abbott RM, Vickery TL, Reed JS, Robinson JS, Wylie T, Smith SM,

Carmichael L, Eldred JM, Harris CC, Walker J, Peck JB, Du F, Dukes AF,

Sanderson GE, Brummett AM, Clark E, McMichael JF, Meyer RJ, Schindler JK,

Pohl CS, Wallis JW, Shi X, Lin L, Schmidt H, Tang Y, Haipek C, Wiechert ME,

Ivy JV, Kalicki J, Elliott G, Ries RE, Payton JE, Westervelt P, Tomasson MH,

Watson MA, Baty J, Heath S, Shannon WD, Nagarajan R, Link DC, Walter MJ,

Graubert TA, DiPersio JF, Wilson RK, Ley TJ, Recurring mutations found by

66

sequencing an acute myeloid leukemia genome. N Engl J Med 361, 1058-66

(2009).

16.

Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR,

Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, Su SM, Sharp KA,

Levine RL, Thompson CB, The common feature of leukemia-associated IDH1

and IDH2 mutations is a neomorphic enzyme activity converting alphaketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225-34 (2010).

17.

Ohgaki H, Kleihues P, The definition of primary and secondary glioblastoma.

Clin Cancer Res 19, 764-72 (2013).

18.

Mondesir J, Willekens C, Touat M, de Botton S, IDH1 and IDH2 mutations as

novel therapeutic targets: current perspectives. J Blood Med 7, 171-80 (2016).

19.

Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, Felsberg J,

Wolter M, Mawrin C, Wick W, Weller M, Herold-Mende C, Unterberg A, Jeuken

JW, Wesseling P, Reifenberger G, von Deimling A, Type and frequency of IDH1

and IDH2 mutations are related to astrocytic and oligodendroglial differentiation

and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118, 469-74 (2009).

20.

Im AP, Sehgal AR, Carroll MP, Smith BD, Tefferi A, Johnson DE, Boyiadzis M,

DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid

malignancies: associations with prognosis and potential treatment strategies.

Leukemia 28, 1774-83 (2014).

21.

Chou WC, Lei WC, Ko BS, Hou HA, Chen CY, Tang JL, Yao M, Tsay W, Wu

67

SJ, Huang SY, Hsu SC, Chen YC, Chang YC, Kuo KT, Lee FY, Liu MC, Liu

CW, Tseng MH, Huang CF, Tien HF, The prognostic impact and stability of

Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid

leukemia. Leukemia 25, 246-53 (2011).

22.

Abbas S, Lugthart S, Kavelaars FG, Schelen A, Koenders JE, Zeilemaker A,

van Putten WJ, Rijneveld AW, Löwenberg B, Valk PJ, Acquired mutations in the

genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid

leukemia: prevalence and prognostic value. Blood 116, 2122-6 (2010).

23.

Borger DR, Tanabe KK, Fan KC, Lopez HU, Fantin VR, Straley KS, Schenkein

DP, Hezel AF, Ancukiewicz M, Liebman HM, Kwak EL, Clark JW, Ryan DP,

Deshpande V, Dias-Santagata D, Ellisen LW, Zhu AX, Iafrate AJ, Frequent

mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma

identified through broad-based tumor genotyping. Oncologist 17, 72-9 (2012).

24.

Wang P, Dong Q, Zhang C, Kuan PF, Liu Y, Jeck WR, Andersen JB, Jiang W,

Savich GL, Tan TX, Auman JT, Hoskins JM, Misher AD, Moser CD, Yourstone

SM, Kim JW, Cibulskis K, Getz G, Hunt HV, Thorgeirsson SS, Roberts LR, Ye

D, Guan KL, Xiong Y, Qin LX, Chiang DY, Mutations in isocitrate

dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas

and share hypermethylation targets with glioblastomas. Oncogene 32, 3091-100

(2013).

25.

Grassian AR, Pagliarini R, Chiang DY, Mutations of isocitrate dehydrogenase 1

68

and 2 in intrahepatic cholangiocarcinoma. Curr Opin Gastroenterol 30, 295-302

(2014).

26.

Kipp BR, Voss JS, Kerr SE, Barr Fritcher EG, Graham RP, Zhang L, Highsmith

WE, Zhang J, Roberts LR, Gores GJ, Halling KC, Isocitrate dehydrogenase 1

and 2 mutations in cholangiocarcinoma. Hum Pathol 43, 1552-8 (2012).

27.

Zou S, Li J, Zhou H, Frech C, Jiang X, Chu JS, Zhao X, Li Y, Li Q, Wang H,

Hu J, Kong G, Wu M, Ding C, Chen N, Hu H, Mutational landscape of

intrahepatic cholangiocarcinoma. Nat Commun 5, 5696 (2014).

28.

Jiao Y, Pawlik TM, Anders RA, Selaru FM, Streppel MM, Lucas DJ, Niknafs N,

Guthrie VB, Maitra A, Argani P, Offerhaus GJA, Roa JC, Roberts LR, Gores GJ,

Popescu I, Alexandrescu ST, Dima S, Fassan M, Simbolo M, Mafficini A,

Capelli P, Lawlor RT, Ruzzenente A, Guglielmi A, Tortora G, de Braud F, Scarpa

A, Jarnagin W, Klimstra D, Karchin R, Velculescu VE, Hruban RH, Vogelstein

B, Kinzler KW, Papadopoulos N, Wood LD, Exome sequencing identifies

frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic

cholangiocarcinomas. Nat Genet 45, 1470-3 (2013).

29.

Al-Khallaf H, Isocitrate dehydrogenases in physiology and cancer: biochemical

and molecular insight. Cell Biosci 7, 37 (2017).

30.

Gupta R, Flanagan S, Li CC, Lee M, Shivalingham B, Maleki S, Wheeler HR,

Buckland ME, Expanding the spectrum of IDH1 mutations in gliomas. Mod

Pathol 26, 619-25 (2013).

69

31.

Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrózek K, Margeson D,

Holland KB, Whitman SP, Becker H, Schwind S, Metzeler KH, Powell BL,

Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Baer MR, Caligiuri MA, Larson

RA, Bloomfield CD, IDH1 and IDH2 gene mutations identify novel molecular

subsets within de novo cytogenetically normal acute myeloid leukemia: a

Cancer and Leukemia Group B study. J Clin Oncol 28, 2348-55 (2010).

32.

Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR,

Khanin R, Figueroa ME, Melnick A, Wellen KE, O'Rourke DM, Berger SL,

Chan TA, Levine RL, Mellinghoff IK, Thompson CB, IDH mutation impairs

histone demethylation and results in a block to cell differentiation. Nature 483,

474-8 (2012).

33.

Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat

N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters

JK, Liu W, Choe SE, Fantin VR, Paietta E, Löwenberg B, Licht JD, Godley LA,

Delwel R, Valk PJ, Thompson CB, Levine RL, Melnick A, Leukemic IDH1 and

IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function,

and impair hematopoietic differentiation. Cancer Cell 18, 553-67 (2010).

34.

Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H,

Liu Y, Sundaram RK, Hegan DC, Fons NR, Breuer GA, Song Y, Mishra-Gorur

K, De Feyter HM, de Graaf RA, Surovtseva YV, Kachman M, Halene S, Günel

M, Glazer PM, Bindra RS, 2-Hydroxyglutarate produced by neomorphic IDH

70

mutations suppresses homologous recombination and induces PARP inhibitor

sensitivity. Sci Transl Med 9, (2017).

35.

Molenaar RJ, Radivoyevitch T, Maciejewski JP, van Noorden CJ, Bleeker FE,

The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations

in oncogenesis and survival prolongation. Biochim Biophys Acta 1846, 326-41

(2014).

36.

Han S, Liu Y, Cai SJ, Qian M, Ding J, Larion M, Gilbert MR, Yang C, IDH

mutation in glioma: molecular mechanisms and potential therapeutic targets. Br

J Cancer 122, 1580-9 (2020).

37.

Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Xiao MT, Liu

LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY,

Guan KL, Zhao SM, Xiong Y, Oncometabolite 2-hydroxyglutarate is a

competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell

19, 17-30 (2011).

38.

Prensner JR, Chinnaiyan AM, Metabolism unhinged: IDH mutations in cancer.

Nat Med 17, 291-3 (2011).

39.

Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, Leung

IK, Li XS, Woon EC, Yang M, McDonough MA, King ON, Clifton IJ, Klose RJ,

Claridge TD, Ratcliffe PJ, Schofield CJ, Kawamura A, The oncometabolite 2hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12, 463-9

(2011).

71

40.

Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, Kato M, Hama N,

Hosoda F, Urushidate T, Ohashi S, Hiraoka N, Ojima H, Shimada K, Okusaka T,

Kosuge T, Miyagawa S, Shibata T, Genomic spectra of biliary tract cancer. Nat

Genet 47, 1003-10 (2015).

41.

Blechacz B, Cholangiocarcinoma: Current Knowledge and New Developments.

Gut Liver 11, 13-26 (2017).

42.

Hoyos S, Navas MC, Restrepo JC, Botero RC, Current controversies in

cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 1864, 1461-7 (2018).

43.

Razumilava N, Gores GJ, Cholangiocarcinoma. Lancet 383, 2168-79 (2014).

44.

Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ, Cholangiocarcinoma evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 15, 95-111

(2018).

45.

Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR,

Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, Perugorria MJ,

Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA,

Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P,

Mertens JC, Moncsek A, Rizvi S, Heimbach J, Koerkamp BG, Bruix J, Forner

A, Bridgewater J, Valle JW, Gores GJ, Cholangiocarcinoma 2020: the next

horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 17,

557-88 (2020).

46.

Brown KM, Parmar AD, Geller DA, Intrahepatic cholangiocarcinoma. Surg

72

Oncol Clin N Am 23, 231-46 (2014).

47.

Buettner S, van Vugt JL, IJzermans JN, Groot Koerkamp B, Intrahepatic

cholangiocarcinoma: current perspectives. Onco Targets Ther 10, 1131-42

(2017).

48.

Ross JS, Wang K, Gay L, Al-Rohil R, Rand JV, Jones DM, Lee HJ, Sheehan

CE, Otto GA, Palmer G, Yelensky R, Lipson D, Morosini D, Hawryluk M,

Catenacci DV, Miller VA, Churi C, Ali S, Stephens PJ, New routes to targeted

therapy of intrahepatic cholangiocarcinomas revealed by next-generation

sequencing. Oncologist 19, 235-42 (2014).

49.

Lowery MA, Ptashkin R, Jordan E, Berger MF, Zehir A, Capanu M, Kemeny

NE, O'Reilly EM, El-Dika I, Jarnagin WR, Harding JJ, D'Angelica MI, Cercek

A, Hechtman JF, Solit DB, Schultz N, Hyman DM, Klimstra DS, Saltz LB,

Abou-Alfa GK, Comprehensive Molecular Profiling of Intrahepatic and

Extrahepatic Cholangiocarcinomas: Potential Targets for Intervention. Clin

Cancer Res 24, 4154-61 (2018).

50.

Lee K, Song YS, Shin Y, Wen X, Kim Y, Cho NY, Bae JM, Kang GH,

Intrahepatic cholangiocarcinomas with IDH1/2 mutation-associated

hypermethylation at selective genes and their clinicopathological features. Sci

Rep 10, 15820 (2020).

51.

Goyal L, Govindan A, Sheth RA, Nardi V, Blaszkowsky LS, Faris JE, Clark JW,

Ryan DP, Kwak EL, Allen JN, Murphy JE, Saha SK, Hong TS, Wo JY, Ferrone

73

CR, Tanabe KK, Chong DQ, Deshpande V, Borger DR, Iafrate AJ, Bardeesy N,

Zheng H, Zhu AX, Prognosis and Clinicopathologic Features of Patients With

Advanced Stage Isocitrate Dehydrogenase (IDH) Mutant and IDH Wild-Type

Intrahepatic Cholangiocarcinoma. Oncologist 20, 1019-27 (2015).

52.

Zhu AX, Borger DR, Kim Y, Cosgrove D, Ejaz A, Alexandrescu S, Groeschl

RT, Deshpande V, Lindberg JM, Ferrone C, Sempoux C, Yau T, Poon R, Popescu

I, Bauer TW, Gamblin TC, Gigot JF, Anders RA, Pawlik TM, Genomic profiling

of intrahepatic cholangiocarcinoma: refining prognosis and identifying

therapeutic targets. Ann Surg Oncol 21, 3827-34 (2014).

53.

Hanahan D, Weinberg RA, Hallmarks of cancer: the next generation. Cell 144,

646-74 (2011).

54.

Adekola K, Rosen ST, Shanmugam M, Glucose transporters in cancer

metabolism. Curr Opin Oncol 24, 650-4 (2012).

55.

Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A, Regulation of glut1

mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J

Biol Chem 276, 9519-25 (2001).

56.

Hayashi M, Sakata M, Takeda T, Yamamoto T, Okamoto Y, Sawada K, Kimura

A, Minekawa R, Tahara M, Tasaka K, Murata Y, Induction of glucose transporter

1 expression through hypoxia-inducible factor 1alpha under hypoxic conditions

in trophoblast-derived cells. J Endocrinol 183, 145-54 (2004).

57.

Wieman HL, Wofford JA, Rathmell JC, Cytokine stimulation promotes glucose

74

uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and

trafficking. Mol Biol Cell 18, 1437-46 (2007).

58.

Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ,

Rathmell JC, Glucose uptake is limiting in T cell activation and requires CD28mediated Akt-dependent and independent pathways. J Immunol 180, 4476-86

(2008).

59.

Fang J, Zhou SH, Fan J, Yan SX, Roles of glucose transporter-1 and the

phosphatidylinositol 3‑kinase/protein kinase B pathway in cancer radioresistance

(review). Mol Med Rep 11, 1573-81 (2015).

60.

Zhang Z, Yao L, Yang J, Wang Z, Du G, PI3K/Akt and HIF‑1 signaling pathway

in hypoxia‑ischemia (Review). Mol Med Rep 18, 3547-54 (2018).

61.

Carvalho KC, Cunha IW, Rocha RM, Ayala FR, Cajaíba MM, Begnami MD,

Vilela RS, Paiva GR, Andrade RG, Soares FA, GLUT1 expression in malignant

tumors and its use as an immunodiagnostic marker. Clinics (Sao Paulo) 66, 96572 (2011).

62.

Zambrano A, Molt M, Uribe E, Salas M, Glut 1 in Cancer Cells and the

Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy. Int J Mol

Sci 20, (2019).

63.

Ancey PB, Contat C, Meylan E, Glucose transporters in cancer - from tumor

cells to the tumor microenvironment. FEBS J 285, 2926-43 (2018).

64.

Kubo Y, Aishima S, Tanaka Y, Shindo K, Mizuuchi Y, Abe K, Shirabe K,

75

Maehara Y, Honda H, Oda Y, Different expression of glucose transporters in the

progression of intrahepatic cholangiocarcinoma. Hum Pathol 45, 1610-7 (2014).

65.

Paudyal B, Oriuchi N, Paudyal P, Higuchi T, Nakajima T, Endo K, Expression

of glucose transporters and hexokinase II in cholangiocellular carcinoma

compared using [18F]-2-fluro-2-deoxy-D-glucose positron emission

tomography. Cancer Sci 99, 260-6 (2008).

66.

Carbonneau M, M Gagné L, Lalonde ME, Germain MA, Motorina A, Guiot

MC, Secco B, Vincent EE, Tumber A, Hulea L, Bergeman J, Oppermann U,

Jones RG, Laplante M, Topisirovic I, Petrecca K, Huot M, Mallette FA, The

oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nat

Commun 7, 12700 (2016).

67.

Ikenoue T, Terakado Y, Nakagawa H, Hikiba Y, Fujii T, Matsubara D, Noguchi

R, Zhu C, Yamamoto K, Kudo Y, Asaoka Y, Yamaguchi K, Ijichi H, Tateishi K,

Fukushima N, Maeda S, Koike K, Furukawa Y, A novel mouse model of

intrahepatic cholangiocarcinoma induced by liver-specific Kras activation and

Pten deletion. Sci Rep 6, 23899 (2016).

68.

Ward PS, Lu C, Cross JR, Abdel-Wahab O, Levine RL, Schwartz GK,

Thompson CB, The potential for isocitrate dehydrogenase mutations to produce

2-hydroxyglutarate depends on allele specificity and subcellular

compartmentalization. J Biol Chem 288, 3804-15 (2013).

69.

Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y,

76

Ding J, Lei Q, Guan KL, Xiong Y, Glioma-derived mutations in IDH1

dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324,

261-5 (2009).

70.

Calvert AE, Chalastanis A, Wu Y, Hurley LA, Kouri FM, Bi Y, Kachman M,

May JL, Bartom E, Hua Y, Mishra RK, Schiltz GE, Dubrovskyi O, Mazar AP,

Peter ME, Zheng H, James CD, Burant CF, Chandel NS, Davuluri RV, Horbinski

C, Stegh AH, Cancer-Associated IDH1 Promotes Growth and Resistance to

Targeted Therapies in the Absence of Mutation. Cell Rep 19, 1858-73 (2017).

71.

Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, Deng X, Wang Y,

Weng X, Hu C, Yu M, Skibbe J, Dai Q, Zou D, Wu T, Yu K, Weng H, Huang H,

Ferchen K, Qin X, Zhang B, Qi J, Sasaki AT, Plas DR, Bradner JE, Wei M,

Marcucci G, Jiang X, Mulloy JC, Jin J, He C, Chen J, R-2HG Exhibits Antitumor Activity by Targeting FTO/m. Cell 172, 90-105.e23 (2018).

72.

Núñez FJ, Mendez FM, Kadiyala P, Alghamri MS, Savelieff MG, GarciaFabiani MB, Haase S, Koschmann C, Calinescu AA, Kamran N, Saxena M,

Patel R, Carney S, Guo MZ, Edwards M, Ljungman M, Qin T, Sartor MA,

Tagett R, Venneti S, Brosnan-Cashman J, Meeker A, Gorbunova V, Zhao L,

Kremer DM, Zhang L, Lyssiotis CA, Jones L, Herting CJ, Ross JL,

Hambardzumyan D, Hervey-Jumper S, Figueroa ME, Lowenstein PR, Castro

MG, IDH1-R132H acts as a tumor suppressor in glioma via epigenetic upregulation of the DNA damage response. Sci Transl Med 11, (2019).

77

73.

Bralten LB, Kloosterhof NK, Balvers R, Sacchetti A, Lapre L, Lamfers M,

Leenstra S, de Jonge H, Kros JM, Jansen EE, Struys EA, Jakobs C, Salomons

GS, Diks SH, Peppelenbosch M, Kremer A, Hoogenraad CC, Smitt PA, French

PJ, IDH1 R132H decreases proliferation of glioma cell lines in vitro and in vivo.

Ann Neurol 69, 455-63 (2011).

74.

Nie QM, Lin YY, Yang X, Shen L, Guo LM, Que SL, Li XX, Ge JW, Wang GS,

Xiong WH, Guo P, Qiu YM, IDH1R¹³²H decreases the proliferation of U87

glioma cells through upregulation of microRNA-128a. Mol Med Rep 12, 6695701 (2015).

75.

Cui D, Ren J, Shi J, Feng L, Wang K, Zeng T, Jin Y, Gao L, R132H mutation in

IDH1 gene reduces proliferation, cell survival and invasion of human glioma by

downregulating Wnt/β-catenin signaling. Int J Biochem Cell Biol 73, 72-81

(2016).

76.

Bunse L, Pusch S, Bunse T, Sahm F, Sanghvi K, Friedrich M, Alansary D,

Sonner JK, Green E, Deumelandt K, Kilian M, Neftel C, Uhlig S, Kessler T, von

Landenberg A, Berghoff AS, Marsh K, Steadman M, Zhu D, Nicolay B, Wiestler

B, Breckwoldt MO, Al-Ali R, Karcher-Bausch S, Bozza M, Oezen I, Kramer M,

Meyer J, Habel A, Eisel J, Poschet G, Weller M, Preusser M, Nadji-Ohl M, Thon

N, Burger MC, Harter PN, Ratliff M, Harbottle R, Benner A, Schrimpf D, Okun

J, Herold-Mende C, Turcan S, Kaulfuss S, Hess-Stumpp H, Bieback K, Cahill

DP, Plate KH, Hänggi D, Dorsch M, Suvà ML, Niemeyer BA, von Deimling A,

78

Wick W, Platten M, Suppression of antitumor T cell immunity by the

oncometabolite (R)-2-hydroxyglutarate. Nat Med 24, 1192-203 (2018).

77.

Fu X, Chin RM, Vergnes L, Hwang H, Deng G, Xing Y, Pai MY, Li S, Ta L,

Fazlollahi F, Chen C, Prins RM, Teitell MA, Nathanson DA, Lai A, Faull KF,

Jiang M, Clarke SG, Cloughesy TF, Graeber TG, Braas D, Christofk HR, Jung

ME, Reue K, Huang J, 2-Hydroxyglutarate Inhibits ATP Synthase and mTOR

Signaling. Cell Metab 22, 508-15 (2015).

78.

Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K,

Cyclooxygenase-2 in cancer: A review. J Cell Physiol 234, 5683-99 (2019).

79.

Liu B, Qu L, Yan S, Cyclooxygenase-2 promotes tumor growth and suppresses

tumor immunity. Cancer Cell Int 15, 106 (2015).

80.

Garg M, Braunstein G, Koeffler HP, LAMC2 as a therapeutic target for cancers.

Expert Opin Ther Targets 18, 979-82 (2014).

81.

Moon YW, Rao G, Kim JJ, Shim HS, Park KS, An SS, Kim B, Steeg PS,

Sarfaraz S, Changwoo Lee L, Voeller D, Choi EY, Luo J, Palmieri D, Chung

HC, Kim JH, Wang Y, Giaccone G, LAMC2 enhances the metastatic potential of

lung adenocarcinoma. Cell Death Differ 22, 1341-52 (2015).

82.

Fujiwara H, Tateishi K, Misumi K, Hayashi A, Igarashi K, Kato H, Nakatsuka

T, Suzuki N, Yamamoto K, Kudo Y, Hayakawa Y, Nakagawa H, Tanaka Y, Ijichi

H, Kogure H, Nakai Y, Isayama H, Hasegawa K, Fukayama M, Soga T, Koike

K, Mutant IDH1 confers resistance to energy stress in normal biliary cells

79

through PFKP-induced aerobic glycolysis and AMPK activation. Sci Rep 9,

18859 (2019).

83.

Qing Y, Dong L, Gao L, Li C, Li Y, Han L, Prince E, Tan B, Deng X, Wetzel C,

Shen C, Gao M, Chen Z, Li W, Zhang B, Braas D, Ten Hoeve J, Sanchez GJ,

Chen H, Chan LN, Chen CW, Ann D, Jiang L, Muschen M, Marcucci G, Plas

DR, Li Z, Su R, Chen J, R-2-hydroxyglutarate attenuates aerobic glycolysis in

leukemia by targeting the FTO/m(6)A/PFKP/LDHB axis. Mol Cell

84.

(2021).

Liberti MV, Locasale JW, The Warburg Effect: How Does it Benefit Cancer

Cells? Trends Biochem Sci 41, 211-8 (2016).

85.

Lenting K, Khurshed M, Peeters TH, van den Heuvel CNAM, van Lith SAM,

de Bitter T, Hendriks W, Span PN, Molenaar RJ, Botman D, Verrijp K,

Heerschap A, Ter Laan M, Kusters B, van Ewijk A, Huynen MA, van Noorden

CJF, Leenders WPJ, Isocitrate dehydrogenase 1-mutated human gliomas depend

on lactate and glutamate to alleviate metabolic stress. FASEB J 33, 557-71

(2019).

86.

Yu Y, Liao M, Liu R, Chen J, Feng H, Fu Z, Overexpression of lactate

dehydrogenase-A in human intrahepatic cholangiocarcinoma: its implication for

treatment. World J Surg Oncol 12, 78 (2014).

87.

Thonsri U, Seubwai W, Waraasawapati S, Sawanyawisuth K,

Vaeteewoottacharn K, Boonmars T, Cha'on U, Overexpression of lactate

dehydrogenase A in cholangiocarcinoma is correlated with poor prognosis.

80

Histol Histopathol 32, 503-10 (2017).

88.

Siska PJ, van der Windt GJ, Kishton RJ, Cohen S, Eisner W, MacIver NJ, Kater

AP, Weinberg JB, Rathmell JC, Suppression of Glut1 and Glucose Metabolism

by Decreased Akt/mTORC1 Signaling Drives T Cell Impairment in B Cell

Leukemia. J Immunol 197, 2532-40 (2016).

89.

Hoxhaj G, Manning BD, The PI3K-AKT network at the interface of oncogenic

signalling and cancer metabolism. Nat Rev Cancer 20, 74-88 (2020).

90.

Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB,

Akt-directed glucose metabolism can prevent Bax conformation change and

promote growth factor-independent survival. Mol Cell Biol 23, 7315-28 (2003).

91.

Barthel A, Okino ST, Liao J, Nakatani K, Li J, Whitlock JP, Roth RA,

Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J

Biol Chem 274, 20281-6 (1999).

92.

Plas DR, Talapatra S, Edinger AL, Rathmell JC, Thompson CB, Akt and Bcl-xL

promote growth factor-independent survival through distinct effects on

mitochondrial physiology. J Biol Chem 276, 12041-8 (2001).

93.

Bruick RK, McKnight SL, A conserved family of prolyl-4-hydroxylases that

modify HIF. Science 294, 1337-40 (2001).

94.

Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR,

Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton

DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ,

81

Ratcliffe PJ, C. elegans EGL-9 and mammalian homologs define a family of

dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43-54 (2001).

95.

Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von

Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh

CW, Ratcliffe PJ, Targeting of HIF-alpha to the von Hippel-Lindau

ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 46872 (2001).

96.

Majmundar AJ, Wong WJ, Simon MC, Hypoxia-inducible factors and the

response to hypoxic stress. Mol Cell 40, 294-309 (2010).

97.

Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, Losman JA,

Joensuu P, Bergmann U, Gross S, Travins J, Weiss S, Looper R, Ligon KL,

Verhaak RG, Yan H, Kaelin WG, Transformation by the (R)-enantiomer of 2hydroxyglutarate linked to EGLN activation. Nature 483, 484-8 (2012).

98.

Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow

E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM,

Clish CB, Murphy LO, Manning BD, Activation of a metabolic gene regulatory

network downstream of mTOR complex 1. Mol Cell 39, 171-83 (2010).

99.

Tandon P, Gallo CA, Khatri S, Barger JF, Yepiskoposyan H, Plas DR,

Requirement for ribosomal protein S6 kinase 1 to mediate glycolysis and

apoptosis resistance induced by Pten deficiency. Proc Natl Acad Sci U S A 108,

2361-5 (2011).

82

100.

Dodd KM, Yang J, Shen MH, Sampson JR, Tee AR, mTORC1 drives HIF-1α

and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and

STAT3. Oncogene 34, 2239-50 (2015).

101.

He L, Gomes AP, Wang X, Yoon SO, Lee G, Nagiec MJ, Cho S, Chavez A,

Islam T, Yu Y, Asara JM, Kim BY, Blenis J, mTORC1 Promotes Metabolic

Reprogramming by the Suppression of GSK3-Dependent Foxk1

Phosphorylation. Mol Cell 70, 949-60.e4 (2018).

102.

Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia

AJ, Abraham RT, Regulation of hypoxia-inducible factor 1alpha expression and

function by the mammalian target of rapamycin. Mol Cell Biol 22, 7004-14

(2002).

103.

Saha SK, Parachoniak CA, Ghanta KS, Fitamant J, Ross KN, Najem MS,

Gurumurthy S, Akbay EA, Sia D, Cornella H, Miltiadous O, Walesky C,

Deshpande V, Zhu AX, Hezel AF, Yen KE, Straley KS, Travins J, PopoviciMuller J, Gliser C, Ferrone CR, Apte U, Llovet JM, Wong KK, Ramaswamy S,

Bardeesy N, Mutant IDH inhibits HNF-4α to block hepatocyte differentiation

and promote biliary cancer. Nature 513, 110-4 (2014).

83

Acknowledgements

I would like to express my gratitude to all those who helped me writing this

thesis.

I gratefully acknowledge the help of my supervisor, Professor Yoichi Furukawa,

who has offered me valuable suggestions in the academic studies. Without his patient

instruction, insightful criticism and expert guidance, the completion of this thesis would

not have been possible.

I also gratefully acknowledge the help of my supervisor, Associate Professor

Tsuneo Ikenoue, who has given me so much advice and encouragement on my research

and this thesis.

I am also deeply indebted to Dr. Kiyoshi Yamaguchi, Seira Hatakeyama, Yumiko

Isobe, Rika Koubo and the laboratory members in Division of Clinical Genome Research,

The Institute of Medical Science, The University of Tokyo, for their kind help and

encouragement to me during my research.

Finally, I should express my very profound gratitude to my family for giving me

unfailing support and continuous encouragement throughout my years of study and

through the process of writing this thesis.

84

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る