リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Genomics-based discrimination of 2n gamete formation mechanisms in polyploids: a case study in nonaploid Diospyros kaki ‘Akiou’」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Genomics-based discrimination of 2n gamete formation mechanisms in polyploids: a case study in nonaploid Diospyros kaki ‘Akiou’

Sun, Peng Nishiyama, Soichiro Asakuma, Hideaki Voorrips, Roeland E Fu, Jianmin Tao, Ryutaro 京都大学 DOI:10.1093/g3journal/jkab188

2021.08

概要

Unreduced gametes (2n gametes), possessing double the haploid genome, whatever ploidy that happens to be, are a common source of ploidy variation in plant populations. First and second division restitution (FDR and SDR) are the dominant mechanisms of 2n gamete production; all else being equal, FDR gametes have a higher degree of heterozygosity, thus they are advantageous in breeding. The discrimination of these mechanisms from the consequence of hybridization is challenging, especially in higher polyploids, and usually requires information on centromere location. In this study, we propose a genotyping-based strategy to uncover the mechanisms of 2n gamete formation in progeny that has a higher ploidy than its parents. Simulation of 2n gamete production revealed that FDR and SDR pathways can be discriminated based on allele transmission patterns alone without information on centromere location. We applied this strategy to study the formation mechanism of a nonaploid Diospyros kaki ‘Akiou', which was bred via hybridization between D. kaki hexaploid cultivars. The result demonstrated that ‘Akiou' was derived from the fertilization of a normal female gamete by a 2n male gamete and that this 2n gamete was produced through FDR. Consequently, the distinct duplex transmission pattern in the FDR gamete enabled us to infer the genomic characteristics of polyploid persimmon. The method could be tested only for the plant being polypoid, which allows for the ability to discriminate causes of 2n gamete formation using allele dosage in progeny, and will be useful in future studies of polyploid genomics.

この論文で使われている画像

参考文献

Akagi T, Katayama-Ikegami A, Yonemori K. 2011. Proanthocyanidin

biosynthesis of persimmon (Diospyros kaki Thunb.) fruit. Sci

Hortic. 130:373–380. doi:10.1016/j.scienta.2011.07.021.

Akagi T, Tao R, Tsujimoto T, Kono A, Yonemori K. 2012. Fine genotyping of a highly polymorphic ASTRINGENCY-linked locus

reveals variable hexasomic inheritance in persimmon (Diospyros

kaki Thunb.) cultivars. Tree Genet Genome. 8:195–204. doi:

10.1007/s11295-011-0432-0.

Alexander DE, Beckett JB. 1963. Spontaneous triploidy and tetraploidy in maize. J Hered. 54:103–106. doi:10.1093/oxfordjournals.jhered.a107235.

Aleza P, Jua´rez J, Cuenca J, Ollitrault P, Navarro L. 2010. Recovery of citrus triploid hybrids by embryo rescue and flow cytometry from 2x 

2x sexual hybridisation and its application to extensive breeding programs. Plant Cell Rep. 29:1023–1034. doi:10.1007/s00299-010-0888-7.

Barone A, Gebhardt C, Frusciante L. 1995. Heterozygosity in 2n gametes of potato evaluated by RFLP markers. Theoret Appl Genetics.

91:98–104. doi:10.1007/BF00220864.

Bourke PM, Hackett CA, Voorrips RE, Visser RGF, Maliepaard C. 2019.

Quantifying the power and precision of QTL analysis in autopolyploids under bivalent and multivalent genetic models. G3

(Bethesda). 9:2107–2122. doi:10.1534/g3.119.400269.

Carputo D, Barone A. 2005. Ploidy level manipulations in potato

through sexual hybridisation. Ann Appl Biol. 146:71–79.

Carputo D, Frusciante L, Peloquin SJ. 2003. The role of 2n gametes

and endosperm balance number in the origin and evolution of

polyploids in the tuber-bearing Solanums. Genetics. 163:287–294.

doi:10.1023/A:1022320801661.

11

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one

FASTQ preprocessor. Bioinformatics. 34:i884–i890. doi:10.1093/bioinformatics/bty560.

Chijiwa H, Asakuma H, Ishizaka A. 2013. Development of seedless

PCNA Persimmon (Diospyros kaki Thunb.) cv. ‘Fukuoka K1 Gou’

and the effect of gibberellin spray and/or disbudding on fruit set.

Hort Res (Japan). 12:263–267 (In Japanese with English Abstract).

doi:10.2503/hrj.12.263.

Chijiwa H, Kuwahara M, Hirakawa N, Tetsumura T. 2008.

Generation of nonaploid persimmons (Diospyros kaki Thunb.) by

embryo culture of imperfect seeds derived from a cross between

‘Fuyu’ and ‘Taishuu’. J Japan Soc Hort Sci. 77:358–363. doi:

10.2503/jjshs1.77.358.

Cuenca J, Aleza P, Jua´rez J, Garcı´a-Lor A, Froelicher Y, et al. 2015.

Maximum-likelihood method identifies meiotic restitution

mechanism from heterozygosity transmission of centromeric

loci: application in citrus. Sci Rep. 5:9897. doi:10.1038/srep09897.

Cuenca J, Froelicher Y, Aleza P, Jua´rez J, Navarro L, et al. 2011.

Multilocus half-tetrad analysis and centromere mapping in

citrus: evidence of SDR mechanism for 2n megagametophyte

production and partial chiasma interference in mandarin

cv

‘Fortune’.

Heredity

(Edinb).

107:462–470.

doi:

10.1038/hdy.2011.33.

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al.; 1000

Genomes Project Analysis Group. 2011. The variant call format

and VCFtools. Bioinformatics. 27:2156–2158. doi:10.1093/bioinformatics/btr330.

De Storme N, Geelen D. 2013. Sexual polyploidization in plants—cytological mechanisms and molecular regulation. New Phytol.

198:670–684. doi:10.1111/nph.12184.

Dewitte A, Van Laere K, Van Huylenbroeck J. 2012. Use of 2n-gametes

in plant breeding. In: I Abdurakhmonov, editor. Plant Breeding.

Rijeka (Croatia): InTech. p. 59-86. ISBN:978-953-307-932-5.

Dong CB, Suo YJ, Wang J, Kang XY. 2015. Analysis of transmission of

heterozygosity by 2n gametes in Populus (Salicaceae). Tree Genet

Genome. 11:799 doi:10.1007/s11295-014-0799-9.

Ferrante SP, Lucretti S, Reale S, De Patrizio A, Abbate L, et al. 2010.

Assessment of the origin of new citrus tetraploid hybrids (2n ¼

4x) by means of SSR markers and PCR based dosage effects.

Euphytica. 173:223–233. doi:10.1007/s10681-009-0093-3.

Hahn SK, Bai KV, Asiedu R. 1990. Tetraploids, triploids, and 2n pollen

from diploid interspecific crosses with cassava. Theor Appl

Genet. 79:433–439. doi:10.1007/BF00226148.

Hutten RC, Schippers MG, Hermsen JG, Ramanna MS. 1994.

Comparative performance of FDR and SDR progenies from reciprocal 4x-2x crosses in potato. Theoret Appl Genetics. 89:545–550.

doi:10.1007/BF00222446.

Ikeda I, Yamada M, Kurihara A, Nishida T. 1985. Inheritance of astringency in Japanese persimmon. Engei Gakkai Zasshi. 54:39–45.

doi:10.2503/jjshs.54.39.

Kanzaki S, Akagi T, Masuko T, Kimura M, Yamada M, et al. 2010.

SCAR markers for practical application of marker-assisted selection in persimmon (Diospyros kaki Thunb.) breeding. J Japan Soc

Hort Sci. 79:150–155.

Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, et al. 2012.

VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22:568–576. doi:

10.1101/gr.129684.111.

Li H, Durbin R. 2010. Fast and accurate long-read alignment with

Burrows-Wheeler transform. Bioinformatics. 26:589–595. doi:

10.1093/bioinformatics/btp698.

Liesebach H, Ulrich K, Ewald D. 2015. FDR and SDR processes in meiosis and diploid gamete formation in poplars (Populus L.) detected

Downloaded from https://academic.oup.com/g3journal/article/11/8/jkab188/6288453 by Kyoto University user on 11 October 2022

The authors would like to thank Editage (www.editage.cn) for

English language editing.

P.S., S.N., H.A., J.F., and R.T. conceived the study. P.S. and S.N.

designed the study and drafted the manuscript. H.A. and R.T.

prepared the materials. P.S. and S.N. carried out the experiments

and conducted the bioinformatics analysis. S.N. and R.E.V. developed and carried out the simulation. All authors interpreted the

data and edited the manuscript.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

12 |

G3, 2021, Vol.11, No.8

pollination with unreduced (2n ¼ 6x) pollen and embryo rescue

culture. J Am Soc Hortic Sci. 125:609–614. doi:10.1023/A:

1008713230963.

Suo Y, Sun P, Cheng H, Han W, Diao S, et al. 2020. A high-quality

chromosomal genome assembly of Diospyros oleifera Cheng.

GigaScience. 9:10. doi:10.1093/gigascience/giz164.

Sved JA. 1964. The relationship between diploid and tetraploid

recombination

frequencies.

Heredity.

19:585–596.

doi:

10.1038/hdy.1964.72.

Voorrips RE, Maliepaard CA. 2012. The simulation of meiosis in diploid and tetraploid organisms using various genetic models. BMC

Bioinformatics. 13:248.doi:10.1186/1471-2105-13-248.

Xu J, Zhang Q, Xu L, Guo D, Luo Z. 2016. Recent developments in

deastringency mechanism of persimmon fruit. Acta Hortic

Sinica. 43:1653–1664 (In Chinese with English Abstract). doi:

10.16420/j.issn.0513-353x.2016-0312.

Yamada A, Tao R. 2006. High frequency sexual polyploidisation observed in hexaploid Japanese persimmon (Diospyros kaki)

‘Fujiwaragosho’. J Hortic Sci Biotechnol. 81:402–408.

Yamada M, Yamane H, Ukai Y. 1994. Genetic analysis of Japanese

persimmon fruit weight. J. Amer. Soc. Hort. Sci. 119:1298-1302.

Yamada M, Sato A. 2002. Segregation for fruit astringency type in progenies derived from crosses of ‘Nishimurawase’  pollination constant

non-astringent genotypes in oriental persimmon (Diospyros kaki

Thunb.). Sci Hortic. 92:107–111. doi:10.1016/S0304-4238(01)00285-0.

Yao H, Dogra Gray A, Auger DL, Birchler JA. 2013. Genomic dosage

effects on heterosis in triploid maize. Proc Natl Acad Sci USA.

110:2665–2669. doi:10.1073/pnas.1221966110.

Younis A, Hwang YJ, Lim KB. 2014. Exploitation of induced 2ngametes for plant breeding. Plant Cell Rep. 33:215–223. doi:

10.1007/s00299-013-1534-y.

Zhang JF, Wei ZZ, Li D, Li B. 2009. Using SSR markers to study the

mechanism of 2n pollen formation in Populus  euramericana

(Dode) Guinier and P.  popularis. Ann for Sci. 66:506. doi:

10.1051/forest/2009032.

Communicating editor: J. Wendel

Downloaded from https://academic.oup.com/g3journal/article/11/8/jkab188/6288453 by Kyoto University user on 11 October 2022

by centromere-associated microsatellite markers. Tree Genet

Genome. 11:801.doi:10.1007/s11295-014-0801-6.

Mai Y, Li S, Suo Y, Sun P, Han W, et al. 2019. Identification of natural

2n pollens in different persimmon germplasms and ascertainment of their induction period. J China Agric Univ. 24:44–52 (In

Chinese

with

English

Abstract)

doi:

10.11841/j.issn.1007-4333.2019.12.05.

Nishiyama S, Onoue N, Kono A, Sato A, Ushijima K, et al. 2018.

Comparative mapping of the ASTRINGENCY locus controlling

fruit astringency in hexaploid persimmon (Diospyros kaki Thunb.)

with the diploid D. lotus reference genome. The Hortic J. 87:

315–323. doi:10.2503/hortj.OKD-140.

Pei X, Zhang Q, Guo D, Liu J, Luo Z. 2015. Development of genetic improvement in Chinese PCNA persimmon. J Fruit Sci. 32:313–321 (In

Chinese with English Abstract). doi:10.13925/j.cnki.gsxb.20140320.

Peloquin SJ, Boiteux LS, Carputo D. 1999. Meiotic mutants in potato:

valuable

variants.

Genetics.

153:1493–1499.

doi:

10.1017/S0016672399004188.

Peloquin SJ, Boiteux LS, Simon PW, Jansky SH. 2008. A chromosome-specific estimate of transmission of heterozygosity by 2n gametes in potato. J Hered. 99:177–181. doi:10.1093/jhered/esm110.

Ramanna MS, Jacobsen E. 2003. Relevance of sexual polyploidization

for crop improvement—a review. Euphytica. 133:3–8. doi:

10.1023/A:1025600824483.

Ramsey J. 2007. Unreduced gametes and neopolyploids in natural

populations of Achillea borealis (Asteraceae). Heredity (Edinb). 98:

143–150. doi:10.1038/sj.hdy.6800912.

Ramsey J, Schemske DW. 1998. Pathways mechanisms, and rates of

polyploid formation in flowering plants. Annu Rev Ecol Syst. 29:

467–501. doi:10.1146/annurev.ecolsys.29.1.467.

Rouiss H, Cuenca J, Navarro L, Ollitrault P, Aleza P. 2017. Tetraploid

citrus progenies arising from FDR and SDR unreduced pollen in

4x X 2x hybridizations. Tree Genet Genome. 13:10 doi:

10.1007/s11295-016-1094-8.

Sato A, Yamada M. 2016. Persimmon breeding in Japan for pollination-constant non-astringent (PCNA) type with marker-assisted

selection. Breed Sci. 66:60–68. doi:10.1270/jsbbs.66.60.

Sugiura A, Ohkuma T, Choi YA, Tao R, Tamura M. 2000. Production

of nonaploid (2n ¼ 9x) Japanese persimmons (Diospyros kaki) by

...

参考文献をもっと見る