リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Predicting global distributions of eukaryotic plankton communities from satellite data」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Predicting global distributions of eukaryotic plankton communities from satellite data

Kaneko, Hiroto Endo, Hisashi Henry, Nicolas Berney, Cédric Mahé, Frédéric Poulain, Julie Labadie, Karine Beluche, Odette El Hourany, Roy Tara Oceans Coordinators Chaffron, Samuel Wincker, Patrick Nakamura, Ryosuke Karp-Boss, Lee Boss, Emmanuel Bowler, Chris de Vargas, Colomban Tomii, Kentaro Ogata, Hiroyuki 京都大学 DOI:10.1038/s43705-023-00308-7

2023.09.22

概要

Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a. The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic–subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming.

この論文で使われている画像

参考文献

1. Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G, Byrne H, et al. Global

trends in marine plankton diversity across kingdoms of life. Cell.

2019;179:1084–97.

2. Mouw CB, Hardman-Mountford NJ, Alvain S, Bracher A, Brewin RJW, Bricaud A,

et al. A consumer’s guide to satellite remote sensing of multiple phytoplankton

groups in the global ocean. Front Mar Sci. 2017;4:41.

3. Bracher A, Bouman HA, Brewin RJW, Bricaud A, Brotas V, Ciotti AM, et al.

Obtaining phytoplankton diversity from ocean color: a scientific roadmap for

future development. Front Mar Sci. 2017;4:55.

4. Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee, Scholes GD.

Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev. 2017;117:249–93.

5. Hirata T, Hardman-Mountford NJ, Brewin RJW, Aiken J, Barlow R, Suzuki K, et al.

Synoptic relationships between surface Chlorophyll- a and diagnostic pigments

specific to phytoplankton functional types. Biogeosciences. 2011;8:311–27.

6. Uitz J, Claustre H, Morel A, Hooker SB. Vertical distribution of phytoplankton

communities in open ocean: an assessment based on surface chlorophyll. J

Geophys Res. 2006;111:C08005.

7. Brewin RJW, Devred E, Sathyendranath S, Lavender SJ, Hardman-Mountford NJ.

Model of phytoplankton absorption based on three size classes. Appl Opt.

2011;50:4535–49.

8. Roy S, Sathyendranath S, Bouman H, Platt T. The global distribution of phytoplankton size spectrum and size classes from their light-absorption spectra

derived from satellite data. Remote Sens Environ. 2013;139:185–97.

9. Devred E, Sathyendranath S, Stuart V, Platt T. A three component classification of

phytoplankton absorption spectra: application to ocean-color data. Remote Sens

Environ. 2011;115:2255–66.

10. Li Z, Li L, Song K, Cassar N. Estimation of phytoplankton size fractions based on

spectral features of remote sensing ocean color data. J Geophys Res Oceans.

2013;118:1445–58.

11. Kostadinov TS, Siegel DA, Maritorena S. Global variability of phytoplankton

functional types from space: assessment via the particle size distribution. Biogeosciences. 2010;7:3239–57.

12. Sadeghi A, Dinter T, Vountas M, Taylor BB, Altenburg-Soppa M, Peeken I, et al.

Improvement to the PhytoDOAS method for identification of coccolithophores

using hyper-spectral satellite data. Ocean Sci. 2012;8:1055–70.

13. Bracher A, Vountas M, Dinter T, Burrows JP, Röttgers R, Peeken I. Quantitative

observation of cyanobacteria and diatoms from space using PhytoDOAS on

SCIAMACHY data. Biogeosciences. 2009;6:751–64.

14. Alvain S, Moulin C, Dandonneau Y, Bréon FM. Remote sensing of phytoplankton

groups in case 1 waters from global SeaWiFS imagery. Deep Sea Res Part I.

2005;52:1989–2004.

15. Alvain S, Moulin C, Dandonneau Y, Loisel H. Seasonal distribution and succession

of dominant phytoplankton groups in the global ocean: a satellite view. Glob

Biogeochem Cycles. 2008;22:GB3001.

16. Reygondeau G, Longhurst A, Martinez E, Beaugrand G, Antoine D, Maury O.

Dynamic biogeochemical provinces in the global ocean. Glob Biogeochem

Cycles. 2013;27:1046–58.

17. Larsen PE, Field D, Gilbert JA. Predicting bacterial community assemblages using

an artificial neural network approach. Nat Methods. 2012;9:621–5.

18. Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev

Microbiol. 2012;10:538–50.

19. Chaffron S, Delage E, Budinich M, Vintache D, Henry N, Nef C, et al. Environmental

vulnerability of the global ocean epipelagic plankton community interactome. Sci

Adv. 2021;7:eabg1921.

20. McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation and projection

for dimension reduction. arXiv. 2020; https://doi.org/10.48550/arXiv.1802.03426.

21. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source

tool for metagenomics. PeerJ. 2016;4:e2584.

22. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMPnet.journal. 2011; https://doi.org/10.14806/ej.17.1.200.

23. Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner H-W, et al. Multiple

marker parallel tag environmental DNA sequencing reveals a highly complex

eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.

24. Mahé F, Czech L, Stamatakis A, Quince C, de Vargas C, Dunthorn M, et al. Swarm

v3: towards tera-scale amplicon clustering. Bioinformatics. 2022;38:267–9.

25. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity

and speed of chimera detection. Bioinformatics. 2011;27:2194–200.

26. Frøslev TG, Kjøller R, Bruun HH, Ejrnæs R, Brunbjerg AK, Pietroni C, et al. Algorithm

for post-clustering curation of DNA amplicon data yields reliable biodiversity

estimates. Nat Commun. 2017;8:1188.

27. Berney C. EukRibo: a manually curated eukaryotic 18S rDNA reference database.

Zenodo. 2022; https://doi.org/10.5281/zenodo.6896896.

28. Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberød AK, Schmidt TSB,

et al. Disentangling the mechanisms shaping the surface ocean microbiota.

Microbiome. 2020;8:55.

29. Brown MV, van de Kamp J, Ostrowski M, Seymour JR, Ingleton T, Messer LF, et al.

Systematic, continental scale temporal monitoring of marine pelagic microbiota

by the Australian Marine Microbial Biodiversity Initiative. Sci Data. 2018;5:180130.

30. Amante C, Eakins BW. ETOPO1 1 Arc-minute global relief model: procedures, data

sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National

Geophysical Data Center, NOAA. 2009; https://doi.org/10.7289/V5C8276M.

31. Righetti D, Vogt M, Gruber N, Psomas A, Zimmermann NE. Global pattern of

phytoplankton diversity driven by temperature and environmental variability. Sci

Adv. 2019;5:eaau6253.

32. Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP. spThin: an R

package for spatial thinning of species occurrence records for use in ecological

niche models. Ecography. 2015;38:541–5.

33. Mikolajczak A, Maréchal D, Sanz T, Isenmann M, Thierion V, Luque S. Modelling

spatial distributions of alpine vegetation: a graph theory approach to delineate

ecologically-consistent species assemblages. Ecol Inform. 2015;30:196–202.

34. Baldassano SN, Bassett DS. Topological distortion and reorganized modular

structure of gut microbial co-occurrence networks in inflammatory bowel disease. Sci Rep. 2016;6:26087.

35. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are

compositional: and this is not optional. Front Microbiol. 2017;8:2224.

36. Tackmann J, Matias Rodrigues JF, von Mering C. Rapid inference of direct interactions in large-scale ecological networks from heterogeneous microbial

sequencing data. Cell Syst. 2019;9:286–96.

37. Meng L, Endo H, Blanc-Mathieu R, Chaffron S, Hernández-Velázquez R, Kaneko H,

et al. Quantitative assessment of nucleocytoplasmic large DNA virus and

host interactions predicted by co-occurrence analyses. mSphere.

2021;6:e01298–20.

38. Clauset A, Newman MEJ, Moore C. Finding community structure in very large

networks. Phys Rev E. 2004;70:066111.

39. Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, et al. Crossvalidation strategies for data with temporal, spatial, hierarchical, or phylogenetic

structure. Ecography. 2017;40:913–29.

40. Hussain MD, Mahmud I. pyMannKendall: a python package for non parametric

Mann Kendall family of trend tests. J Open Source Softw. 2019;4:1556.

ISME Communications

H. Kaneko et al.

41. Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing wellconnected communities. Sci Rep. 2019;9:5233.

42. Xia J, Kameyama S, Prodinger F, Yoshida T, Cho K, Jung J, et al. Tight association

between microbial eukaryote and giant virus communities in the Arctic Ocean.

Limnol Oceanogr. 2022;67:1343–56.

43. Prodinger F, Endo H, Takano Y, Li Y, Tominaga K, Isozaki T, et al. Year-round

dynamics of amplicon sequence variant communities differ among eukaryotes,

Imitervirales, and prokaryotes in a coastal ecosystem. FEMS Microbiol Ecol.

2021;97:fiab167.

44. Endo H, Blanc-Mathieu R, Li Y, Salazar G, Henry N, Labadie K, et al. Biogeography

of marine giant viruses reveals their interplay with eukaryotes and ecological

functions. Nat Ecol Evol. 2020;4:1639–49.

45. Werdell PJ, Behrenfeld MJ, Bontempi PS, Boss E, Cairns B, Davis GT, et al. The

plankton, aerosol, cloud, ocean ecosystem mission: status, science, advances. Bull

Am Meteorol Soc. 2019;100:1775–94.

46. Richter DJ, Watteaux R, Vannier T, Leconte J, Frémont P, Reygondeau G, et al.

Genomic evidence for global ocean plankton biogeography shaped by largescale current systems. Elife. 2022;11:e78129.

47. Frémont P, Gehlen M, Vrac M, Leconte J, Delmont TO, Wincker P, et al.

Restructuring of plankton genomic biogeography in the surface ocean under

climate change. Nat Clim Change. 2022;12:393–401.

48. Longhurst A, Sathyendranath S, Platt T, Caverhill C. An estimate of global primary

production in the ocean from satellite radiometer data. J Plankton Res.

1995;17:1245–71.

49. Yasunaka S, Nojiri Y, Nakaoka S, Ono T, Whitney FA, Telszewski M. Mapping of sea

surface nutrients in the North Pacific: Basin-wide distribution and seasonal to

interannual variability. J Geophys Res Oceans. 2014;119:7756–71.

50. Cheung S, Nitanai R, Tsurumoto C, Endo H, Nakaoka S, Cheah W, et al. Physical

forcing controls the basin‐scale occurrence of nitrogen‐fixing organisms in the

North Pacific Ocean. Glob Biogeochem Cycles. 2020;34:e2019GB006452.

51. Follows MJ, Dutkiewicz S. Modeling diverse communities of marine microbes.

Annu Rev Mar Sci. 2011;3:427–51.

ACKNOWLEDGEMENTS

We thank the Tara Oceans consortium, the EukBank consortium, and the people and

sponsors who supported the Tara Oceans Expedition (http://www.embl.de/taraoceans/) for making the data accessible. This is contribution number 146 of the Tara

Oceans Expedition 2009–2013. Computational time was provided by the Supercomputer System, Institute for Chemical Research, Kyoto University. This work was

supported by JSPS/KAKENHI (Nos. 18H02279 and 19H05667 to HO), the Collaborative

Research Program of the Institute for Chemical Research, Kyoto University (2020–29

to KT), and JST SPRING, Grant Number JPMJSP2110 (to HK), France Génomique (ANR10-INBS-09 to PW), a CNES postdoc fellowship 2019–2021 to REH, ERC Advanced

Award Diatomic (Grant agreement No. 835067 to CB), and the Horizon Europe project

‘Marco-Bolo’ (Grant Agreement No. 101082021 to CB). We thank Leonie Seabrook,

PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

AUTHOR CONTRIBUTIONS

HK designed the study, performed most of the bioinformatics analyses and wrote the

initial manuscript. HE, RN, KT, and HO contributed to the design of the work and

supervised HK. NH, CB, FM, and CdV performed the amplicon sequence data

processing and annotation. JP, KL, OB, and PW treated biological samples and

performed sequencing. REH, SC, LK-B, EB, and CB provided expertise in marine

biology. Tara Oceans Coordinators (SGA, MB, PB, EB, CB, GC, CdV, GG, LG, NG, PH, DI,

OJ, SK, LK-B, EK, FN, HO, NP, SP, CS, SS, LS, MBS, SS, and PW) contributed to the

expeditionary infrastructure needed for global ocean sampling, sample processing,

and data production. All authors contributed to the interpretation of data and

finalization of the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s43705-023-00308-7.

Correspondence and requests for materials should be addressed to Kentaro Tomii or

Hiroyuki Ogata.

Reprints and permission information is available at http://www.nature.com/

reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit http://

creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

TARA OCEANS COORDINATORS

Silvia G. Acinas15, Marcel Babin16, Peer Bork17,18,19, Emmanuel Boss 13, Chris Bowler10, Guy Cochrane 20, Colomban de Vargas21,

Gabriel Gorsky22, Lionel Guidi22,23, Nigel Grimsley24,25, Pascal Hingamp26, Daniele Iudicone 27, Olivier Jaillon 7, Stefanie Kandels28,

Lee Karp-Boss 13, Eric Karsenti10,28, Fabrice Not4, Hiroyuki Ogata 1 ✉, Nicole Poulton 29, Stéphane Pesant 30, Christian Sardet22,31,

Sabrina Speich32,33, Lars Stemmann22, Matthew B. Sullivan 34,35, Shinichi Sunagawa 36 and Patrick Wincker 7

15

Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain. 16Département de biologie, Québec Océan and Takuvik Joint

International Laboratory (UMI3376), Université Laval (Canada) - CNRS (France), Université Laval, Québec, QC G1V 0A6, Canada. 17Structural and Computational Biology, European

Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. 18Max Delbrück Centre for Molecular Medicine, 13125 Berlin, Germany. 19Department of

Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany. 20European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Welcome

Trust Genome Campus, Hinxton, Cambridge, UK. 21CNRS, UMR 7144, EPEP & Sorbonne Universités, UPMC Université Paris 06, Station Biologique de Roscoff, 29680 Roscoff, France.

22

Sorbonne Université, UMR7093 Laboratoire d’océanographie de Villefranche (LOV), Institut de la Mer de Villefranche (IMEV), 06230 Villefranche-sur-Mer, France. 23Department

of Oceanography, University of Hawaii, Honolulu, HI 96822, USA. 24CNRS, UMR 7232, BIOM, Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France. 25Sorbonne Universités Paris

06, OOB UPMC, Avenue de Pierre Fabre, 66650 Banyuls-sur-Mer, France. 26Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France. 27Stazione Zoologica Anton

Dohrn, Villa Comunale, 80121 Naples, Italy. 28European Molecular Biology Laboratory Meyerhofstr. 1, 69117 Heidelberg, Germany. 29Bigelow Laboratory for Ocean Sciences, East

Boothbay, ME 04544, USA. 30European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK. 31CNRS,

UMR 7009 Biodev, Observatoire Océanologique, F-06230 Villefranche-sur-mer, France. 32Laboratoire de Physique des Océans, UBO-IUEM, Place Copernic, 29820 Plouzané, France.

33

Department of Geosciences, Laboratoire de Météorologie Dynamique (LMD), Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France. 34Department of

Microbiology, The Ohio State University, Columbus, OH 43214, USA. 35Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH

43214, USA. 36Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.

ISME Communications

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る