リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spontaneous superconducting diode effect in non-magnetic Nb/Ru/Sr₂RuO₄ topological junctions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spontaneous superconducting diode effect in non-magnetic Nb/Ru/Sr₂RuO₄ topological junctions

Anwar, Muhammad Shahbaz Nakamura, Taketomo Ishiguro, Ryosuke Arif, Shafaq Robinson, Jason W. A. Yonezawa, Shingo Sigrist, Manfred Maeno, Yoshiteru 京都大学 DOI:10.1038/s42005-023-01409-4

2023.10.13

概要

Non-reciprocal electronic transport in a material occurs if both time reversal and inversion symmetries are broken. The superconducting diode effect (SDE) is an exotic manifestation of this type of behavior where the critical current for positive and negative currents are mismatched, as recently observed in some non-centrosymmetric superconductors with a magnetic field. Here, we demonstrate a SDE in non-magnetic Nb/Ru/Sr₂RuO₄ Josephson junctions without applying an external magnetic field. The cooling history dependence of the SDE suggests that time-reversal symmetry is intrinsically broken by the superconducting phase of Sr₂RuO₄. Applied magnetic fields modify the SDE dynamically by randomly changing the sign of the non-reciprocity. We propose a model for such a topological junction with a conventional superconductor surrounded by a chiral superconductor with broken time reversal symmetry.

この論文で使われている画像

参考文献

1.

2.

Ando, F. et al. Observation of superconducting diode effect. Nature 584,

373–376 (2020).

Narita, H. et al. Field-free superconducting diode effect in

noncentrosymmetric superconductor/ferromagnet multilayers. Nat. Nanotech.

17, 823–828 (2022).

COMMUNICATIONS PHYSICS | (2023)6:290 | https://doi.org/10.1038/s42005-023-01409-4 | www.nature.com/commsphys

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01409-4

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Ye, C. et al. Non-reciprocal transport in a bilayer of MnBi2Te4 and Pt. Nano.

Lett. 22, 1366–1373 (2022).

Bauriedl, L. C. B. et al. Supercurrent diode effect and magnetochiral anisotropy

in few layer NbSe2. Nat. Commun. 13, 4266 (2022).

Wakatsuki, R. et al. Non-reciprocal charge transport in noncentrosymmetric

superconductors. Sci. Adv. 3, e1602390 (2017).

Hou, Y. et al. Ubiquitous superconducting diode effect in superconductor thin

films. Phys. Rev. Lett. 131, 027001 (2023).

Baumgartner, C. et al. Supercurrent rectification and magnetochiral effects in

symmetric Josephson junctions. Nat. Nanotechnol. 17, 39–44 (2022).

Wu, H. et al. The field-free Josephson diode in a van der Waals

heterostructure. Nature 604, 653–656 (2022).

Pal, B. et al. Josephson diode effect from Cooper pair momentum in a

topological semimetal. Nat. Phys. 18, 1228–1233 (2022).

Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism.

Nature 390, 493–494 (1997).

Rikken, G. L. J. A., Folling, J. & Wyder, P. Electrical magnetochiral anisotropy.

Phys. Rev. Lett. 87, 236602 (2001).

Daido, A., Ikeda, Y. & Yanase, Y. Intrinsic superconducting diode effect. Phys.

Rev. Lett. 128, 037001 (2022).

Yuan, N. F. Q. & Fu, L. Supercurrent diode effect and finite-momentum

superconductors. Proc. Natl Acad. Sci. USA 119, e2119548119 (2022).

Ilić, S. & Bergeret, F. S. Theory of the supercurrent diode effect in Rashba

superconductors with arbitrary disorder. Phys. Rev. Lett. 128, 177001 (2022).

Scammell, H. D., Li, J. I. A. & Mathias, S. S. Theory of zero-field superconducting

diode effect in twisted trilayer graphene. 2D Mater. 9, 025027 (2022).

He, J. J., Tanaka, Y. & Nagaosa, N. A phenomenological theory of

superconductor diodes. N. J. Phys. 24, 053014 (2022).

Jeon, K.-R. et al. Zero-field polarity-reversible Josephson supercurrent diodes

enabled by a proximity-magnetized Pt barrier. 1. Nat. Mat. 21, 1008–1013

(2022).

Lin, J.-X. et al. Zero-field superconducting diode effect in small-twist-angle

trilayer graphene. Nat. Phys. 18, 1221–1227 (2022).

Díez-Mérida, J. et al. Symmetry-broken Josephson junctions and

superconducting diodes in magic-angle twisted bilayer graphene. Nat.

Commun. 14, 2396 (2023).

Zinkl, B., Hamamoto, K. & Sigrist, M. Symmetry conditions for the

superconducting diode effect in chiral superconductors. Phys. Rev. Res. 4,

033167 (2022).

Hooper, J. et al. Anomalous Josephson network in the Ru-Sr2RuO4 eutectic

system. Phys. Rev. B 70, 014510 (2004).

Maeno, Y., Kittaka, S., Nomura, T., Yonezawa, S. & Ishida, K. Evaluation of

spin-triplet superconductivity in Sr2RuO4. J. Phys. Soc. Jpn. 81, 011009 (2012).

Mackenzie, A. P., Scaffidi, T., Hicks, C. W. & Maeno, Y. Even odder after

twenty-three years: the superconducting order parameter puzzle of Sr2RuO4.

npj. Quant. Mater. 2, 40 (2017).

Anwar, M. S. & Robinson, R. W. A. A review of electronic transport in

superconducting Sr2RuO4 junctions. Coatings 11, 1110 (2021).

Ghosh, S. S., Xin, Y., Mao, Z. & Manousakis, E. Interface between Sr2RuO4

and Ru-metal inclusion: implications for its superconductivity. Phys. Rev. B

96, 184506 (2017).

Maeno, Y. et al. Enhancement of superconductivity of Sr2RuO4 to 3 K by

embedded metallic microdomains. Phys. Rev. Lett. 81, 3765 (1998).

Kittaka, S., Yaguchi, H. & Maeno, Y. Large enhancement of 3-K phase

superconductivity in the Sr2RuO4-Ru eutectic system by uniaxial pressure. J.

Phys. Soc. Jpn. 78, 103705 (2009).

Hicks, C. W. et al. Strong increase of Tc of Sr2RuO4 under both tensile and

compressive strain. Science 344, 283–285 (2014).

Taniguchi, H., Nishimura, K., Goh, S. K., Yonezawa, S. & Maeno, Y. Higher-Tc

superconducting phase in Sr2RuO4 induced by in-plane uniaxial pressure. J.

Phys. Soc. Jpn. 84, 014707 (2015).

Steppke, A. et al. Strong peak in Tc of Sr2RuO4 under uniaxial pressure.

Science 355, eaaf9398 (2017).

Mackenzie, A. P. et al. Extremely strong dependence of superconductivity on

disorder in Sr2RuO4. Phys. Rev. Lett. 80, 161 (1998).

Luke, G. M. et al. Time-reversal symmetry-breaking superconductivity in

Sr2RuO4. Nature 394, 558–561 (1998).

Grinenko, V. et al. Split superconducting and time-reversal symmetry

breaking transitions in Sr2RuO4 under stress. Nat. Phys. 17, 748–754 (2021).

Xia, J., Maeno, Y., Beyersdorf, P. T., Fejer, M. M. & Kapitulnik, A. High

resolution polar Kerr effect measurements of Sr2RuO4: evidence for broken

time-reversal symmetry in the superconducting state. Phys. Rev. Lett. 97,

167002 (2006).

Kidwingira, F., Strand, J. D., Harlingen, D. J. V. & Maeno, Y. Dynamical

superconducting order parameter domains in Sr2RuO4. Science 314,

1267–1271 (2006).

Nakamura, T. et al. Topological competition of superconductivity in Pb/Ru/

Sr2RuO4 junctions. Phys. Rev. B 84, 060512 (2011).

ARTICLE

37. Nakamura, T. et al. Essential configuration of Pb/Ru/Sr2RuO4 junctions

exhibiting anomalous superconducting interference. J. Phys. Soc. Jpn. 81,

064708 (2012).

38. Anwar, M. S. et al. Anomalous switching in Nb/Ru/Sr2RuO4 topological

junctions by chiral domain wall motion. Sci. Rep. 3, 2480 (2013).

39. Anwar, M. S. et al. Multicomponent order parameter superconductivity of

Sr2RuO4. Phys. Rev. B 95, 224509 (2017).

40. Hassinger, E. et al. Vertical line nodes in the superconducting gap structure of

Sr2RuO4. Phys. Rev. X 7, 011032 (2017).

41. Romer, A. T., Scherer, D. D., Eremin, I. M., Hirschfeld, P. J. & Andersen, B. M.

Knight shift and leading superconducting instability from spin fluctuations in

Sr2RuO4. Phys. Rev. Lett. 123, 247001 (2019).

42. Pustogow, A. et al. Constraints on the superconducting order parameter in

Sr2RuO4 from oxygen-17 nuclear magnetic resonance. Nature 574, 72–75

(2019).

43. Ishida, K., Manago, M., Kinjo, K. & Maeno, Y. Reduction of the 17O knight

shift in the superconducting state and the heat-up effect by NMR pulses on

Sr2RuO4. J. Phys. Soc. Jpn 89, 034712 (2020).

44. Petsch, A. N. et al. Reduction of the spin susceptibility in the superconducting

state of Sr2RuO4 observed by polarized neutron scattering. Phys. Rev. Lett.

125, 217004 (2020).

45. Kivelson, S. A., Yuan, A. C., Ramshaw, B. J. & Tomale, R. A proposal for

reconciling diverse experiments on the superconducting state in Sr2RuO4. npj.

Quant. Mat. 5, 43 (2020).

46. Suh, H. G. et al. Stabilizing even-parity chiral superconductivity in Sr2RuO4.

Phys. Rev. Res. 2, 032023(R) (2020).

47. Li, Y.-S. et al. High-sensitivity heat-capacity measurements on Sr2RuO4 under

uniaxial pressure. PNAS 118, e2020492118 (2021).

48. Nago, Y. et al. Superconducting transition of Ru in SQUIDs with Nb/Ru/

Sr2RuO4 junctions. J. Phys.: Conf. Ser. 568, 022031 (2014).

49. Kaneyasu, H. & Sigrist, M. Nucleation of vortex state in Ru-Inclusion in

eutectic ruthenium oxide Sr2RuO4-Ru. J. Phys. Soc. Jpn. 79, 053706

(2010).

50. Kaneyasu, H., Hayashi, N., Gut, B., Makoshi, K. & Sigrist, M. Phase transition

in the 3-Kelvin phase of eutectic Sr2RuO4-Ru. J. Phys. Soc. Jpn. 79, 104705

(2010).

51. Etter, S. B., Kaneyasu, H., Ossadnik, M. & Sigrist, M. Limiting mechanism for

critical current in topologically frustrated Josephson junctions. Phys. Rev. B

90, 024515 (2014).

52. Anwar, M. S. et al. Ferromagnetic SrRuO3 thin-film deposition on a spintriplet superconductor Sr2RuO4 with a highly conducting interface. Appl. Phys.

Expr. 8, 015502 (2015).

53. Anwar, M. S. et al. Direct penetration of spin-triplet superconductivity into a

ferromagnet in Au/SrRuO3/Sr2RuO4 junctions. Nat. Commun. 7, 13220

(2016).

54. Matzdorf, R. et al. Ferromagnetism stabilized by lattice distortion at the

surface of the p-wave superconductor Sr2RuO4. Science 289, 746–748 (2000).

55. Fittipaldi, R. et al. Unveiling unconventional magnetism at the surface of

Sr2RuO4. Nat. Commun. 12, 5792 (2021).

56. Chahid, S., Teknowijoyo, S., Mowgood, I. & Gulian, A. High-frequency diode

effect in superconducting Nb3Sn microbridges. Phys. Rev. B 107, 054506

(2023).

57. Gutfreund, A. et al. Direct observation of a superconducting vortex diode. Nat.

Commun. 14, 1630 (2023).

58. Romanenko, A., Grassellino, A., Melnychuk, O. & Sergatskov, D. A.

Dependence of the residual surface resistance of superconducting radio

frequency cavities on the cooling dynamics around Tc. J. Appl. Phys. 115,

184903 (2014).

59. Kubo, T. Flux trapping in superconducting accelerating cavities during cooling

down with a spatial temperature gradient. Prog. Theor. Exp. Phys. 2016, 5

(2016).

60. Bobowski, J. S. et al. Improved single-crystal growth of Sr2RuO4. Condens.

Matter 4, 6 (2019).

61. Veenstra, C. N. et al. Determining the surface-to-bulk progression in the

normal-state electronic structure of Sr2RuO4 by angle-resolved photoemission

and density functional theory. Phys. Rev. Lett. 110, 0977004 (2013).

Acknowledgements

We are grateful to B. Zinkl and G. Mattoni for helpful discussion. We acknowledge the

support from International Center for Materials Nanoarchitectonics (MANA) in the

National Institute for Materials Science (NIMS), Japan. This work is supported by JSPS

KAKENHI (Nos. JP15H05852, JP15K21717, JP22H01168, JP23K17670, JP22H04473 and

JP26287078), JSPS-EPSRC Core-to-Core Programme (No. JPJSCCA20170002), and the

Swiss National Science Foundation (SNSF) through Division II (No. 184739). M.S.A. and

J.W.A.R. acknowledges funding from the EPSRC International Network Grant “Oxide

Superspin” (No. EP/P026311/1).

COMMUNICATIONS PHYSICS | (2023)6:290 | https://doi.org/10.1038/s42005-023-01409-4 | www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01409-4

Author contributions

M.S.A. devised the experiments and performed the measurements. T.N., R.I., and M.S.A.

prepared the devices. S.Y. was also involved in the measurements. M.S.A., S.A. J.W.A.R.,

and Y.M. analysed the data. M.S. provided theoretical input. M.S.A. wrote the paper and

all the authors were involved in revision and discussion.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s42005-023-01409-4.

Correspondence and requests for materials should be addressed to Muhammad Shahbaz

Anwar.

Peer review information Communications Physics thanks the anonymous reviewers for

their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons licence and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023, corrected publication 2023

Reprints and permission information is available at http://www.nature.com/reprints

COMMUNICATIONS PHYSICS | (2023)6:290 | https://doi.org/10.1038/s42005-023-01409-4 | www.nature.com/commsphys

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る