リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Registration accuracy with the low dose kilovoltage cone-beam CT:A phantom study」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Registration accuracy with the low dose kilovoltage cone-beam CT:A phantom study

武井 良樹 近畿大学

2022.03.01

概要

Objective:
The aim of this study was to investigate low-dose kilovoltage cone-beam CT (kV-CBCT) for image-guided radiotherapy, with a particular focus on the accuracy of image registration with low-dose protocols.

Methods:
Imaging doses were measured with a NOMEX semiconductor detector positioned at the front of head, thorax, and pelvis human body phantoms while kV-CBCT scans were acquired at di!erent tube currents. Aspects of image quality (spatial resolution, noise, uniformity, contrast, geometric distortion, and Hounsfield unit sensitivity) and image registration accuracy using bone and soft tissue were evaluated.

Results:
With preset and the lowest tube currents, the imaging doses were 0.16 and 0.08 mGy, 5.29 and 2.80 mGy, and 18.23 and 2.69 mGy for head, thorax, and pelvis, respectively. Noise was the only quality aspect directly dependent on tube current, being increased by 1.5 times with a tube current half that of the preset in head and thorax, and by 2.2 times with a tube current 1/8 of the preset in the pelvis. Accurate auto-bone matching was performed within 1mm at the lowest tube current. The auto-soft tissue matching could not be performed with the lowest tube current; however, manual-soft tissue matching could still be performed within 2mm or less.

Conclusion:
Noise was the only image quality aspect dependent on the imaging dose. Auto-bone and manual-soft tissue matching could still be performed at the lowest imaging dose.

Advances in knowledge:
When optimizing kV-CBCT imaging dose, the impact on bone and soft tissue image registration accuracy should be evaluated.

参考文献

1. MR Ay, Shahriari M, Sarkar S, Ghafarian P. Measurement of organ dose in abdomenpelvis CT exam as a function of mA, KV and scanner type by Monte Carlo method. Iran. J. Radiat. Res 2004; 1: 187–94.

2. Gu J, Bednarz B, Xu XG, Jiang SB. Assessment of patient organ doses and e&ective doses using the VIP-Man adult male phantom for selected cone-beam CT imaging procedures during image guided radiation therapy. Radiat Prot Dosimetry 2008; 131: 431–43. doi: https://doi.org/10.1093/rpd/ ncn200

3. Kry SF, Bednarz B, Howell RM, Dauer L, Followill D, Klein E, et al. AAPM TG 158: measurement and calculation of doses outside the treated volume from externalbeam radiation therapy. Med Phys 2017; 44: e391–429. doi: https://doi.org/10.1002/mp. 12462

4. Watt TC, Inskip PD, Stratton K, Smith SA, Kry SF, Sigurdson AJ, et al. Radiation-related risk of basal cell carcinoma: a report from the childhood cancer Survivor study. J Natl Cancer Inst 2012; 104: 1240–50. doi: https:// doi.org/10.1093/jnci/djs298

5. Zhang Y, Yan Y, Nath R, Bao S, Deng J. Personalized assessment of kV cone beam computed tomography doses in imageguided radiotherapy of pediatric cancer patients. Int J Radiat Oncol Biol Phys 2012; 83: 1649–54. doi: https://doi.org/10.1016/j. ijrobp.2011.10.072

6. NCRP ‘Implementation of the principle of as low as reasonably achievable (ALARA) for medical and dental personnel’. NCRP Report1990; 107.

7. Murphy MJ, Balter J, Balter S, BenComo JA, Das IJ, Jiang SB, et al. !e management of imaging dose during image-guided radiotherapy: report of the AAPM task group 75. Med Phys 2007; 34: 4041–63. doi: https:// doi.org/10.1118/1.2775667

8. Alaei P, Spezi E. Imaging dose from cone beam computed tomography in radiation therapy. Phys Med 2015; 31: 647–58. doi: https://doi.org/10.1016/j.ejmp.2015.06.003

9. Kouno T, Araki F, Nakaguchi Y, Oono T. Dose distribution from kV-cone beam computed tomography in image-guided radiotherapy. Jpn. J. Radiol. Technol. 2013; 69: 753–60. doi: https://doi.org/10.6009/jjrt. 2013_JSRT_69.7.753

10. Cheng HCY, Wu VWC, Liu ESF, Kwong DLW. Evaluation of radiation dose and image quality for the Varian cone beam computed tomography system. Int J Radiat Oncol Biol Phys 2011; 80: 291–300. doi: https://doi.org/ 10.1016/j.ijrobp.2010.06.014

11. Nobah A, Aldelaijan S, Devic S, Tomic N, Seuntjens J, Al-Shabanah M, et al. Radiochromic "lm based dosimetry of image-guidance procedures on di&erent radiotherapy modalities. Journal of Applied Clinical Medical Physics 2014; 15: 229–39. doi: https://doi.org/10.1120/jacmp.v15i6. 5006

12. Langmack KA, Newton LA, Jordan S, Smith R. Cone beam CT dose reduction in prostate radiotherapy using Likert scale methods. Br J Radiol 2016; 89: 20150460–6. doi: https://doi. org/10.1259/bjr.20150460

13. Lu B, Lu H, Palta J. A comprehensive study on decreasing the kilovoltage cone-beam CT dose by reducing the projection number. Journal of Applied Clinical Medical Physics 2010; 11: 231–49. doi: https://doi.org/10. 1120/jacmp.v11i3.3274

14. Sykes JR, Amer A, Czajka J, Moore CJ. A feasibility study for image guided radiotherapy using low dose, high speed, cone beam X-ray volumetric imaging. Radiother Oncol 2005; 77: 45–52. doi: https:// doi.org/10.1016/j.radonc.2005.05.005

15. Roxby P, Kron T, Foroudi F, Haworth A, Fox C, Mullen A, et al. Simple methods to reduce patient dose in a Varian cone beam CT system for delivery veri"cation in pelvic radiotherapy. Br J Radiol 2009; 82: 855–9. doi: https://doi.org/10.1259/bjr/37579222

16. Ding GX, Munro P, Pawlowski J, Malcolm A, Co&ey CW. Reducing radiation exposure to patients from kV-CBCT imaging. Radiother Oncol 2010; 97: 585–92. doi: https://doi.org/ 10.1016/j.radonc.2010.08.005

17. Ding GX, Munro P. Radiation exposure to patients from image guidance procedures and techniques to reduce the imaging dose. Radiother Oncol 2013; 108: 91–8. doi: https://doi.org/10.1016/j.radonc.2013.05. 034

18. Barber J, Sykes JR, Holloway L, !waites DI. Automatic image registration performance for two di&erent CBCT systems; variation with imaging dose. Journal of Physics: Conference Series 2014; 489: 012070. doi: https://doi.org/10.1088/1742-6596/489/1/ 012070

19. Men K, Dai J. A comprehensive evaluation of angular range and separation on image quality, image registration, and imaging dose for cone beam computed tomography in radiotherapy. Med Dosim 2019; 44: 67–73. doi: https://doi.org/10.1016/j. meddos.2018.02.003

20. Varian Dose in CBCT – OBI advanced imaging. 2009; 1–10.

21. !e Phantom Laboratory Catphan 500and 600 manual. 2009.

22. Gardner SJ, Studenski MT, Giaddui T, Cui Y, Galvin J, Yu Y, et al. Investigation into image quality and dose for di&erent patient geometries with multiple cone-beam CT systems. Med Phys 2014; 41: 031908. doi: https://doi.org/10.1118/1.4865788

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る