リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A New Cation-Ordered Structure Type with Multiple Thermal Redistributions in Co₂InSbO₆」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A New Cation-Ordered Structure Type with Multiple Thermal Redistributions in Co₂InSbO₆

Ji, Kunlang Solana‐Madruga, Elena Patino, Midori Amano Shimakawa, Yuichi Attfield, J. Paul 京都大学 DOI:10.1002/anie.202203062

2022.07.04

概要

Cation ordering in solids is important for controlling physical properties and leads to ilmenite (FeTiO₃) and LiNbO₃ type derivatives of the corundum structure, with ferroelectricity resulting from breaking of inversion symmetry in the latter. However, a hypothetical third ABO₃ derivative with R32 symmetry has never been observed. Here we show that Co₂InSbO₆ recovered from high pressure has a new, ordered-R32 A₂BCO₆ variant of the corundum structure. Co₂InSbO₆ is also remarkable for showing two cation redistributions, to (Co₀.₅In₀.₅)₂CoSbO₆ and then Co₂InSbO₆ variants of the ordered-LiNbO₃ A₂BCO₆ structure on heating. The cation distributions change magnetic properties as the final ordered-LiNbO₃ product has a sharp ferrimagnetic transition unlike the initial ordered-R32 phase. Future syntheses of metastable corundum derivatives at pressure are likely to reveal other cation-redistribution pathways, and may enable ABO₃ materials with the R32 structure to be discovered.

この論文で使われている画像

参考文献

[1] J. M. Rondinelli, C. J. Fennie, Adv. Mater. 2012, 24, 1961–1968.

[2] R. Shankar P N, F. Orlandi, P. Manuel, W. Zhang, P. S. Halasyamani, A. Sundaresan, Chem. Mater. 2020, 32, 5641– 5649.

[3] J. Choisnet, A. Rulmont, P. Tarte, J. Solid State Chem. 1988, 75, 124–135.

[4] P. M. Woodward, A. W. Sleight, L. S. Du, C. P. Grey, J. Solid State Chem. 1999, 147, 99–116.

[5] R. Shankar P N, S. Mishra, S. Athinarayanan, APL Mater. 2020, 8, 040906.

[6] M. Ye, D. Vanderbilt, Phys. Rev. B 2016, 93, 134303.

[7] H. Niu, M. J. Pitcher, A. J. Corkett, S. Ling, P. Mandal, M. Zanella, K. Dawson, P. Stamenov, D. Batuk, A. M. Abakumov, C. L. Bull, R. I. Smith, C. A. Murray, S. J. Day, B. Slater, F. Cora, J. B. Claridge, M. J. Rosseinsky, J. Am. Chem. Soc. 2017, 139, 1520–1531.

[8] P. S. Halasyamani, K. R. Poeppelmeier, Chem. Mater. 1998, 10, 2753–276

[9] K. K. Wong, Properties of Lithium Niobate, INSPEC, UK, 2002.

[10] G. H. Cai, M. Greenblatt, M. R. Li, Chem. Mater. 2017, 29, 5447–5457.

[11] A. M. Arévalo-López, J. P. Attfield, Phys. Rev. B 2013, 88, 104416.

[12] M.-R. Li, D. Walker, M. Retuerto, T. Sarkar, J. Hadermann, P. W. Stephens, M. Croft, A. Ignatov, C. P. Grams, J. Hemberger, I. Nowik, P. S. Halasyamani, T. T. Tran, S. Mukherjee, T. S. Dasgupta, M. Greenblatt, Angew. Chem. Int. Ed. 2013, 52, 8406–8410; Angew. Chem. 2013, 125, 8564–8568.

[13] A. M. Arévalo-López, E. Solana-Madruga, E. P. ArévaloLópez, D. Khalyavin, M. Kepa, A. J. Dos Santos-García, R. Sáez-Puche, J. P. Attfield, Phys. Rev. B Phys. Rev. B 2018, 98, 214403.

[14] E. Solana-Madruga, A. Dos Santos-García, A. Arévalo-López, D. Ávila-Brande, C. Ritter, J. P. Attfield, R. Sáez-Puche, Dalton Trans. 2015, 44, 20441–20448.

[15] K. Ji, E. Solana-Madruga, A. M. Arévalo-López, P. Manuel, C. Ritter, A. Senyshyn, J. P. Attfield, Chem. Commun. 2018, 54, 12523–12526.

[16] S. A. Ivanov, R. Mathieu, P. Nordblad, R. Tellgren, C. Ritter, E. Politova, G. Kaleva, A. Mosunov, S. Stefanovich, M. Weil, Chem. Mater. 2013, 25, 935–945.

[17] M.-R. Li, M. Croft, P. W. Stephens, M. Ye, D. Vanderbilt, M. Retuerto, Z. Deng, C. P. Grams, J. Hemberger, J. Hadermann, W.-M. Li, C.-Q. Jin, F. O. Saouma, J. I. Jang, H. Akamatsu, V. Gopalan, D. Walker, M. Greenblatt, Adv. Mater. 2015, 27, 2177–2181.

[18] M.-R. Li, M. Retuerto, P. W. Stephens, M. Croft, D. Sheptyakov, V. Pomjakushin, Z. Deng, H. Akamatsu, V. Gopalan, J. Sánchez-Benítez, F. O. Saouma, J. I. Jang, D. Walker, M. Greenblatt, Angew. Chem. Int. Ed. 2016, 55, 9862–9867; Angew. Chem. 2016, 128, 10016–10021.

[19] Y. S. Oh, S. Artyukhin, J. J. Yang, V. Zapf, J. W. Kim, D. Vanderbilt, S. W. Cheong, Nat. Commun. 2014, 5, 3201.

[20] J. W. Kim, S. Artyukhin, E. D. Mun, M. Jaime, N. Harrison, A. Hansen, J. J. Yang, Y. S. Oh, D. Vanderbilt, V. S. Zapf, S.-W. Cheong, Phys. Rev. Lett. 2015, 115, 137201.

[21] M. O. Yokosuk, A. al-Wahish, S. Artyukhin, K. R. O’Neal, D. Mazumdar, P. Chen, J. J. Yang, Y. S. Oh, S. A. McGill, K. Haule, S.-W. Cheong, D. Vanderbilt, J. L. Musfeldt, Phys. Rev. Lett. 2016, 117, 147402.

[22] E. Solana-Madruga, C. Aguilar-Maldonado, C. Ritter, M. Huvé, O. Mentré, J. P. Attfield, A. M. Arévalo-López, Chem. Commun. 2021, 57, 2521–2514.

[23] M. R. Li, E. E. McCabe, P. W. Stephens, M. Croft, L. Collins, S. V. Kalinin, Z. Deng, M. Retuerto, A. Sen Gupta, H. Padmanabhan, V. Gopalan, C. P. Grams, J. Hemberger, F. Orlandi, P. Manuel, W.-M. Li, C.-Q. Jin, D. Walker, M. Greenblatt, Nat. Commun. 2017, 8, 2037.

[24] R. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751–767.

参考文献をもっと見る