リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Structural Dissection of Epsin‐1 N‐Terminal Helical Peptide: The Role of Hydrophobic Residues in Modulating Membrane Curvature」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Structural Dissection of Epsin‐1 N‐Terminal Helical Peptide: The Role of Hydrophobic Residues in Modulating Membrane Curvature

Nishimura, Motoki Kawaguchi, Yoshimasa Kuroki, Kakeru Nakagawa, Yuna Masuda, Toshihiro Sakai, Takayuki Kawano, Kenichi Hirose, Hisaaki Imanishi, Miki Takatani-Nakase, Tomoka Afonin, Sergii Ulrich, Anne S. Futaki, Shiroh 京都大学 DOI:10.1002/chem.202300129

2023.05.22

概要

Spatiotemporal structural alterations in cellular membranes are the hallmark of many vital processes. In these cellular events, the induction of local changes in membrane curvature often plays a pivotal role. Many amphiphilic peptides are able to modulate membrane curvature, but there is little information on specific structural factors that direct the curvature change. Epsin-1 is a representative protein thought to initiate invagination of the plasma membrane upon clathrin-coated vesicles formation. Its N-terminal helical segment (EpN18) plays a key role in inducing positive membrane curvature. This study aimed to elucidate the essential structural features of EpN18 in order to better understand general curvature-inducing mechanisms, and to design effective tools for rationally controlling membrane curvature. Structural dissection of peptides derived from EpN18 revealed the decisive contribution of hydrophobic residues to (i) enhancing membrane interactions, (ii) helix structuring, (iii) inducing positive membrane curvature, and (iv) loosening lipid packing. The strongest effect was attained by substitution with leucine residues, as this EpN18 analog showed a marked ability to promote the influx of octa-arginine cell-penetrating peptides into living cells.

この論文で使われている画像

参考文献

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

H. T. McMahon, J. L. Gallop, Nature 2005, 438, 590-596.

a) H. T. McMahon, E. Boucrot, J. Cell Sci. 2015, 128, 1065-1070; b) I. K. Jarsch, F. Daste, J. L. Gallop, J. Cell

Biol. 2016, 214, 375-387; c) M. Kitamata, T. Inaba, S. Suetsugu, Biochem. Soc. Trans. 2020, 48, 837-851.

a) M. M. Kozlov, J. W. Taraska, Nat. Rev. Mol. Cell Biol. 2023, 24, 63-78; b) C. Steinem, M. Meinecke, Soft

Matter 2021, 17, 233-240.

T. Itoh, P. De Camilli, Biochim Biophys Acta 2006, 1761, 897-912.

a) A. Lamazière, C. Wolf, O. Lambert, G. Chassaing, G. Trugnan, J. Ayala-Sanmartin, PLoS One 2008, 3,

e1938; b) J. A. Jackman, V. V. Costa, S. Park, A. Real, J. H. Park, P. L. Cardozo, A. R. Ferhan, I. G. Olmo, T. P.

Moreira, J. L. Bambirra, V. F. Queiroz, C. M. Queiroz-Junior, G. Foureaux, D. G. Souza, F. M. Ribeiro, B. K.

Yoon, E. Wynendaele, B. De Spiegeleer, M. M. Teixeira, N. J. Cho, Nat. Mater. 2018, 17, 971-977; c) T.

Murayama, T. Masuda, S. Afonin, K. Kawano, T. Takatani-Nakase, H. Ida, Y. Takahashi, T. Fukuma, A. S.

Ulrich, S. Futaki, Angew. Chem. Int. Ed. Engl. 2017, 56, 7644-7647.

a) T. Masuda, H. Hirose, K. Baba, A. Walrant, S. Sagan, N. Inagaki, T. Fujimoto, S. Futaki, Bioconjug. Chem.

2020, 31, 1611-1615; b) S. Afonin, A. Frey, S. Bayerl, D. Fischer, P. Wadhwani, S. Weinkauf, A. S. Ulrich,

Chemphyschem 2006, 7, 2134-2142.

a) K. Matsuzaki, K. Sugishita, N. Ishibe, M. Ueha, S. Nakata, K. Miyajima, R. M. Epand, Biochemistry 1998,

37, 11856-11863; b) S. Guha, J. Ghimire, E. Wu, W. C. Wimley, Chem. Rev. 2019, 119, 6040-6085.

G. Drin, B. Antonny, FEBS Lett. 2010, 584, 1840-1847.

H. Chen, S. Fre, V. I. Slepnev, M. R. Capua, K. Takei, M. H. Butler, P. P. Di Fiore, P. De Camilli, Nature 1998,

394, 793-797.

S. Pujals, H. Miyamae, S. Afonin, T. Murayama, H. Hirose, I. Nakase, K. Taniuchi, M. Umeda, K. Sakamoto,

A. S. Ulrich, S. Futaki, ACS Chem. Biol. 2013, 8, 1894-1899.

a) F. Campelo, H. T. McMahon, M. M. Kozlov, Biophys. J. 2008, 95, 2325-2339; b) M. G. Ford, I. G. Mills, B.

J. Peter, Y. Vallis, G. J. Praefcke, P. R. Evans, H. T. McMahon, Nature 2002, 419, 361-366; c) T. Itoh, S.

Koshiba, T. Kigawa, A. Kikuchi, S. Yokoyama, T. Takenawa, Science 2001, 291, 1047-1051.

W. Y. Hsu, T. Masuda, S. Afonin, T. Sakai, J. V. V. Arafiles, K. Kawano, H. Hirose, M. Imanishi, A. S. Ulrich, S.

Futaki, Bioorg. Med. Chem. Lett. 2020, 30, 127190.

K. Kuroki, T. Sakai, T. Masuda, K. Kawano, S. Futaki, Bioorg. Med. Chem. Lett. 2021, 43, 128103.

C. Has, S. L. Das, Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129971.

N. Wang, L. D. Clark, Y. Gao, M. M. Kozlov, T. Shemesh, T. A. Rapoport, Nat. Commun. 2021, 12, 568.

a) L. Vamparys, R. Gautier, S. Vanni, W. F. Bennett, D. P. Tieleman, B. Antonny, C. Etchebest, P. F. Fuchs,

Biophys. J. 2013, 104, 585-593; b) B. Nepal, J. Leveritt, 3rd, T. Lazaridis, Biophys. J. 2018, 114, 2128-2141;

c) K. D. Wildermuth, V. Monje-Galvan, L. M. Warburton, J. B. Klauda, J. Chem. Theory Comput. 2019, 15,

1418-1429; d) N. S. Hatzakis, V. K. Bhatia, J. Larsen, K. L. Madsen, P. Y. Bolinger, A. H. Kunding, J. Castillo,

U. Gether, P. Hedegård, D. Stamou, Nat. Chem. Biol. 2009, 5, 835-841; e) A. H. Larsen, Int. J. Mol. Sci.

2022, 23; f) R. V. M. Freire, Y. Pillco-Valencia, G. C. A. da Hora, M. Ramstedt, L. Sandblad, T. A. Soares, S.

Salentinig, J. Colloid Interface Sci. 2021, 596, 352-363; g) M. Siggel, R. M. Bhaskara, M. K. Moesser, D. I. I,

G. Hummer, J. Phys. Chem. Lett. 2021, 12, 1926-1931; h) S. Vanni, L. Vamparys, R. Gautier, G. Drin, C.

Etchebest, P. F. Fuchs, B. Antonny, Biophys J 2013, 104, 575-584; iN. van Hilten, K. S. Stroh, H. J. Risselada,

J. Chem. Theory Comput. 2022, 18, 4503-4514.

M. Giménez-Andrés, A. Čopič, B. Antonny, Biomolecules 2018, 8.

K. Matsuzaki, O. Murase, H. Tokuda, S. Funakoshi, N. Fujii, K. Miyajima, Biochemistry 1994, 33, 3342-3349.

G. Drin, J. F. Casella, R. Gautier, T. Boehmer, T. U. Schwartz, B. Antonny, Nat. Struct. Mol. Biol. 2007, 14,

138-146.

E. T. Kaiser, F. J. Kézdy, Science 1984, 223, 249-255.

a) P. Y. Chou, G. D. Fasman, Biochemistry 1974, 13, 211-222; b) T. E. Creighton, Proteins: structures and

molecular properties (Second edition), W. H. Freeman, 1992.

a) W. F. Degrado, Adv. Protein. Chem. 1988, 39, 51-124; b) I. V. Korendovych, W. F. DeGrado, Q. Rev.

Biophys. 2020, 53, e3.

Y. I. González, H. Nakanishi, M. Stjerndahl, E. W. Kaler, J. Phys. Chem. B 2005, 109, 11675-11682.

a) C. D. Chang, J. Meienhofer, Int. J. Pept. Protein Res. 1978, 11, 246-249; b) S. Futaki, M. Fukuda, M.

Omote, K. Yamauchi, T. Yagami, M. Niwa, Y. Sugiura, J. Am. Chem. Soc. 2001, 123, 12127-12134.

R. Gautier, D. Douguet, B. Antonny, G. Drin, Bioinformatics 2008, 24, 2101-2102.

R. W. Woody, Methods Enzymol. 1995, 246, 34-71.

J. W. Nelson, N. R. Kallenbach, Proteins 1986, 1, 211-217.

31

[28]

[29]

[30]

[31]

J. Allen, J. P. Pellois, Sci. Rep. 2022, 12, 15981.

a) R. M. Epand, K. D'Souza, B. Berno, M. Schlame, Biochim. Biophys. Acta 2015, 1848, 220-228; b) J.

Jouhet, Front. Plant. Sci. 2013, 4, 494.

D. M. Owen, C. Rentero, A. Magenau, A. Abu-Siniyeh, K. Gaus, Nat. Protoc. 2011, 7, 24-35.

R. W. Glaser, A. S. Ulrich, J. Magn. Reson. 2003, 164, 104-114.

32

Entry for the Table of Contents

The induction of local changes in membrane structure often plays a pivotal role

for cellular life. Epsin-1 is a representative protein to induce positive membrane

curvature and its N-terminal segment (EpN18) plays a key role. This study aimed

to elucidate the essential structural features of EpN18 for a better understanding

of general curvature-modulating mechanisms and to design effective tools for

rationally controlling membrane structure.

33

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る