リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「IGZO薄膜の微細構造解析とその薄膜トランジスタへの応用」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

IGZO薄膜の微細構造解析とその薄膜トランジスタへの応用

エムデイ, ローフ, ウル, カリム, カン RAUF UL KARIM KHAN MD 九州大学

2022.01.31

概要

Indium-Gallium-Zinc Oxide (IGZO) thin films have received great attention in Display technology because of their good electrical, electronic and optical properties. Their electronic device applications are being enhanced owing to their remarkable performance, e.g., high electron carrier mobility, better uniformity over a large area, and potential optical transparency. Moreover, IGZO can be a promising thermoelectric candidate for its good thermoelectric performance to other oxide candidates. The thermal conductivity of IGZO indicates its ability for heat conduction, which is subjected to various factors, and can be subdivided into electro- and phono-thermal conductivities revealed by phonon–phonon and electron–electron scattering. Most studies on IGZO thin films focused on electrical, electronic, and optical properties . The thermal properties of IGZO thin films are also of vital importance for heat dissipation and thermal management of devices. Although the atomic-scale structure of IGZO films has been lacked to reveal whether these are amorphous or crystalline, few fundamental studies have been performed on the relationship between the thermal conductivity and microstructure of IGZO thin films.

From the above perspective, this thesis emphases towards the development of the relationship between the temperature dependence of thermal conductivity of the Indium–Gallium–Zinc–Oxide (IGZO) thin films and microstructure analysis. The research strongly stress on two factors, firstly, Scanning transmission electron microscopy (STEM) observations were also carried out to characterize the nanometre-scale microstructure of the IGZO thin film. Secondly, the temperature dependence thermal conductivity of the Indium–Gallium–Zinc–Oxide (IGZO) thin films was investigated with the differential three-omega method (3ω) for the clear demonstration of nano-crystallinity. Electron microscopy observations revealed the presence of nanocrystals embedded in the amorphous matrix of the IGZO films. The typical size of the nanocrystals was approximately 2 to 5 nm with the lattice distance of about 0.24 nm to 0.26 nm. These experimental results indicate that the nanocrystalline micro-structure controls the heat conduction in the IGZO films. To perform the differential three-omega (3ω) method experiment, the IGZO thin films were deposited on an alumina (-Al2O3) substrate by direct current (DC) magnetron sputtering at different oxygen partial pressures ([PO2] = 0 %, 10 %, and 65 %). Their thermal conductivities at room temperature were measured to be 1.65, 1.76, and 2.58 Wm–1K–1, respectively. The thermal conductivities decreased with increase in the ambient measurement temperature. This thermal property is similar to that of crystalline materials.

To analyse the IGZO thin-film transistor application, the back-channel etched Indium–Gallium–Zinc–Oxide (IGZO) thin-film transistors (TFTs) with copper (Cu) source and drain (S/D) which are patterned by a selective etchant was fabricated and investigated the electrical properties. The main challenge of this work strongly stress on two factors, firstly patterned the source and drain contact by photolithography process with special Cu etchant without damaging the IGZO layer. Secondly, to protect the Cu diffusion into the IGZO thin film. The fabrication process parameters are optimized and the electrical properties is discussed. The Cu S/D were fabricated on molybdenum (Mo) layer to prevent the Cu diffusion to the active layer (IGZO). In this work, the IGZO TFTs with Mo/Cu S/D exhibits good electrical properties as the linear region mobility is 12.3 cm2/V-s, saturation region mobility is 11 cm2/V-s, threshold voltage is 1.2 V and ION is 3.16 x 10-6 A. The results suggested an effective fabrication method for fabricating high mobility metal oxide TFT based on Cu S/D.

この論文で使われている画像

参考文献

[1] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering, Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2353811.

[2] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Amorphous oxide semiconductors for high-performance flexible thin-film transistors, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 45 (2006) 4303–4308. https://doi.org/10.1143/JJAP.45.4303.

[3] M. Kim, J.H. Jeong, H.J. Lee, T.K. Ahn, H.S. Shin, J.S. Park, J.K. Jeong, Y.G. Mo, H.D. Kim, High mobility bottom gate InGaZnO thin film transistors with Si Ox etch stopper, Appl. Phys. Lett. 90 (2007) 1–4. https://doi.org/10.1063/1.2742790.

[4] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room- temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature. 432 (2004) 488–492. https://doi.org/10.1038/nature03090.

[5] Y. Zhu, Y. He, S. Jiang, L. Zhu, C. Chen, Q. Wan, Indium-gallium-zinc-oxide thin- film transistors: Materials, devices, and applications, J. Semicond. 42 (2021). https://doi.org/10.1088/1674-4926/42/3/031101.

[6] J.S. Lee, S. Chang, S.M. Koo, S.Y. Lee, High-performance a-IGZO TFT with ZrO2gate dielectric fabricated at room temperature, IEEE Electron Device Lett. 31 (2010) 225–227. https://doi.org/10.1109/LED.2009.2038806.

[7] P. Ma, L. Du, Y. Wang, R. Jiang, Q. Xin, Y. Li, dielectric Low voltage operation of IGZO thin film transistors enabled by ultrathin Al 2 O 3 gate dielectric, 023501 (2018) 1–5. https://doi.org/10.1063/1.5003662.

[8] E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Gonçalves, A.J.S. Marques, L.M.N. Pereira, R.F.P. Martins, Fully transparent ZnO thin-film transistor produced at room temperature, Adv. Mater. 17 (2005). https://doi.org/10.1002/adma.200400368.

[9] H.-H. Hsieh, C.-C. Wu, Scaling behavior of ZnO transparent thin-film transistors, Appl. Phys. Lett. 89 (2006) 041109. https://doi.org/10.1063/1.2235895.

[10] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor, Science (80-. ). (2003). https://doi.org/10.1126/science.1083212.

[11] M.G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing, Nat. Mater. (2011). https://doi.org/10.1038/nmat3011.

[12] A.T.T. Pham, H.K.T. Ta, Y. ren Liu, M. Aminzare, D.P. Wong, T.H. Nguyen, N.K. Pham, T.B.N. Le, T. Seetawan, H. Ju, S. Cho, K.H. Chen, V.C. Tran, T.B. Phan, Effect of annealing temperature on thermoelectric properties of Ga and In dually doped - ZnO thin films, J. Alloys Compd. 747 (2018) 156–165. https://doi.org/10.1016/j.jallcom.2018.02.349.

[13] J.S. Park, H. Kim, I.D. Kim, Overview of electroceramic materials for oxide semiconductor thin film transistors, J. Electroceramics. 32 (2014). https://doi.org/10.1007/s10832-013-9858-0.

[14] J.S. Park, W.J. Maeng, H.S. Kim, J.S. Park, Review of recent developments in amorphous oxide semiconductor thin-film transistor devices, Thin Solid Films. (2012). https://doi.org/10.1016/j.tsf.2011.07.018.

[15] J. Martins, P. Bahubalindruni, A. Rovisco, A. Kiazadeh, R. Martins, E. Fortunato, P. Barquinha, Bias stress and temperature impact on InGaZnO TFTs and circuits, Materials (Basel). 10 (2017). https://doi.org/10.3390/ma10060680.

[16] S.H. Lee, D.J. Oh, A.Y. Hwang, D.S. Han, S. Kim, J.K. Jeong, J.W. Park, Improvement in Device Performance of a-InGaZnO Transistors by Introduction of Ca- Doped Cu Source/Drain Electrode, IEEE Electron Device Lett. (2015). https://doi.org/10.1109/LED.2015.2445348.

[17] G. Chen, HEAT TRANSFER IN MICRO- AND NANOSCALE PHOTONIC DEVICES, Annu. Rev. Heat Transf. 7 (2013). https://doi.org/10.1615/annualrevheattransfer.v7.30.

[18] K.E. Goodson, Y.S. Ju, Heat Conduction in Novel Electronic Films, Annu. Rev. Mater. Sci. (1999). https://doi.org/10.1146/annurev.matsci.29.1.261.

[19] G. Chen, Phonon heat conduction in nanostructures 1, Int. J. Therm. Sci. 39 (2000). https://doi.org/10.1016/S1290-0729(00)00202-7.

[20] D.G. Cahill, H.E. Fischer, T. Klitsner, E.T. Swartz, R.O. Pohl, Thermal conductivity of thin films: Measurements and understanding, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 7 (1989). https://doi.org/10.1116/1.576265.

[21] I. Hatta, Thermal diffusivity measurements of thin films and multilayered composites, Int. J. Thermophys. 11 (1990). https://doi.org/10.1007/BF01133562.

[22] T.M. Tritt, Thermal Conductivity: Theory, properties and apllications, 2004.

[23] T. Borca-Tasciuc, W. Liu, J. Liu, K.L. Wang, G. Chen, Anisotropic thermal conductivity of a Si/Ge quantum dot superlattice, Am. Soc. Mech. Eng. Heat Transf. Div. HTD. 366 (2000).

[24] K.E. Goodson, M.I. Flik, L.T. Su, D.A. Antoniadis, Prediction and measurement of the thermal conductivity of amorphous dielectric layers, J. Heat Transfer. 116 (1994). https://doi.org/10.1115/1.2911402.

[25] F. Völklein, D.P.E. Kessler, Methods for the measurement of thermal conductivity and thermal diffusivity of very thin films and foils, Measurement. 5 (1987). https://doi.org/10.1016/0263-2241(87)90027-3.

[26] Y.C. Tai, C.H. Mastrangelo, R.S. Muller, Thermal conductivity of heavily doped low- pressure chemical vapor deposited polycrystalline silicon films, J. Appl. Phys. 63 (1988). https://doi.org/10.1063/1.339924.

[27] F. Völklein, Thermal conductivity and diffusivity of a thin film SiO2 Si3N4 sandwich system, Thin Solid Films. 188 (1990) 27–33. https://doi.org/10.1016/0040- 6090(90)90190-O.

[28] F. Völklein, H. Baltes, A Microstructure for Measurement of Thermal Conductivity of Polysilicon Thin Films, J. Microelectromechanical Syst. 1 (1992). https://doi.org/10.1109/JMEMS.1992.752511.

[29] M. Asheghi, K. Kurabayashi, R. Kasnavi, K.E. Goodson, Thermal conduction in doped single-crystal silicon films, J. Appl. Phys. 91 (2002). https://doi.org/10.1063/1.1458057.

[30] M. Asheghi, Y.K. Leung, S.S. Wong, K.E. Goodson, Phonon-boundary scattering in thin silicon layers, Appl. Phys. Lett. 71 (1997). https://doi.org/10.1063/1.119402.

[31] Y.S. Ju, K.E. Goodson, Phonon scattering in silicon films with thickness of order 100 nm, Appl. Phys. Lett. 74 (1999). https://doi.org/10.1063/1.123994.

[32] G. Dastgeer, M.F. Khan, J. Cha, A.M. Afzal, K.H. Min, B.M. Ko, H. Liu, S. Hong, J. Eom, Black Phosphorus-IGZO van der Waals Diode with Low-Resistivity Metal Contacts, ACS Appl. Mater. Interfaces. 11 (2019). https://doi.org/10.1021/acsami.8b20231.

[33] K. Ide, K. Nomura, H. Hiramatsu, T. Kamiya, H. Hosono, Structural relaxation in amorphous oxide semiconductor, a-In-Ga-Zn-O, J. Appl. Phys. 111 (2012) 073513. https://doi.org/10.1063/1.3699372.

[34] A. Janotti, C.G. Van De Walle, T. Hiramatsu, M. Nakashima, E. Kikuchi, N. Ishihara, Correlation between crystallinity and oxygen vacancy formation in In – Ga – Zn oxide study by projector augmented wave method Fundamentals of zinc oxide as a semiconductor, (n.d.).

[35] S. Yamazaki, (Invited) Crystalline Oxide Semiconductor Using CAAC-IGZO and its Application, ECS Trans. . 64 (2014) 155–164. https://doi.org/10.1149/06410.0155ecst.

[36] D.A. Chernodoubov, A. V. Inyushkin, Automatic thermal conductivity measurements with 3-omega technique, Rev. Sci. Instrum. 90 (2019) 024904. https://doi.org/10.1063/1.5084103.

[37] Chapter 10. Sputtering and other physical deposition processes, Tribol. Ser. 35 (1999) 153–178. https://doi.org/10.1016/S0167-8922(99)80013-3.

[38] S. Kudo, H. Hagino, S. Tanaka, K. Miyazaki, M. Takashiri, Determining the Thermal Conductivity of Nanocrystalline Bismuth Telluride Thin Films Using the Differential 3ω Method While Accounting for Thermal Contact Resistance, J. Electron. Mater. 44 (2015) 2021–2025. https://doi.org/10.1007/s11664-015-3646-3.

[39] D.G. Cahill, R.O. Pohl, Thermal conductivity of amorphous solids above the plateau, Phys. Rev. B. (1987). https://doi.org/10.1103/PhysRevB.35.4067.

[40] G. Wei, L. Wang, L. Chen, X. Du, C. Xu, X. Zhang, Analysis of Gas Molecule Mean Free Path and Gaseous Thermal Conductivity in Confined Nanoporous Structures, Int. J. Thermophys. 36 (2015). https://doi.org/10.1007/s10765-015-1942-z.

[41] W. Zhu, G. Zheng, S. Cao, H. He, Thermal conductivity of amorphous SiO2 thin film: A molecular dynamics study, Sci. Rep. 8 (2018). https://doi.org/10.1038/s41598-018- 28925-6.

[42] Y. Yang, D. Zhong, Y. Liu, D. Meng, L. Wang, N. Wei, G. Ren, R. Yan, Y. Kang, Thermal Transport in Graphene Oxide Films: Theoretical Analysis and Molecular Dynamics Simulation, Nanomaterials. 10 (2020) 285. https://doi.org/10.3390/nano10020285.

[43] B. Cui, L. Zeng, D. Keane, M.J. Bedzyk, D.B. Buchholz, R.P.H. Chang, X. Yu, J. Smith, T.J. Marks, Y. Xia, A.F. Facchetti, J.E. Medvedeva, M. Grayson, Thermal Conductivity Comparison of Indium Gallium Zinc Oxide Thin Films: Dependence on Temperature, Crystallinity, and Porosity, J. Phys. Chem. C. 120 (2016) 7467–7475. https://doi.org/10.1021/acs.jpcc.5b12105.

[44] G. Busch, Early history of the physics and chemistry of semiconductors-from doubts to fact in a hundred years, Eur. J. Phys. 10 (1989). https://doi.org/10.1088/0143- 0807/10/4/002.

[45] Host‐Guest‐Systems Based on Nanoporous Crystals, 2003. https://doi.org/10.1002/3527602674.

[46] T. Peter Brody, The Thin Film Transistor—A Late Flowering Bloom, IEEE Trans. Electron Devices. 31 (1984). https://doi.org/10.1109/T-ED.1984.21762.

[47] P.K. Weimer, The TFT—A New Thin-Film Transistor, Proc. IRE. 50 (1962). https://doi.org/10.1109/JRPROC.1962.288190.

[48] A. Madan, P.G. Le Comber, W.E. Spear, Investigation of the density of localized states in a-Si using the field effect technique, J. Non. Cryst. Solids. 20 (1976). https://doi.org/10.1016/0022-3093(76)90134-4.

[49] D. Gorham, Amorphous and microcrystalline semiconductor devices: Optoelectronic devices, Microelectronics J. 24 (1993). https://doi.org/10.1016/0026-2692(93)90016-8.

[50] M.J. Powell, The Physics of Amorphous-Silicon Thin-Film Transistors, IEEE Trans. Electron Devices. 36 (1989). https://doi.org/10.1109/16.40933.

[51] R.A. Street, Thin-film transistors, Adv. Mater. (2009). https://doi.org/10.1002/adma.200803211.

[52] C.-S. Yang, L.L. Smith, C.B. Arthur, G.N. Parsons, Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 18 (2000). https://doi.org/10.1116/1.591259.

[53] P.G. Carey, P.M. Smith, S.D. Theiss, P. Wickboldt, Polysilicon thin film transistors fabricated on low temperature plastic substrates, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 17 (1999). https://doi.org/10.1116/1.581708.

[54] S.C. Wang, C.F. Yeh, C.K. Huang, Y.T. Dai, Device transfer technology by backside etching (DTBE) for poly-Si thin-film transistors on glass/plastic substrate, Japanese J. Appl. Physics, Part 2 Lett. 42 (2003). https://doi.org/10.1143/jjap.42.l1044.

[55] P.G. Le Comber, W.E. Spear, A. Ghaith, Amorphous-silicon field-effect device and possible application, Electron. Lett. 15 (1979). https://doi.org/10.1049/el:19790126.

[56] M.J. Powell, S.C. Deane, I.D. French, J.R. Hughes, W.I. Milne, A defect-pool model for near-interface states in amorphous silicon thin-film transistors, Philos. Mag. B Phys. Condens. Matter; Stat. Mech. Electron. Opt. Magn. Prop. 63 (1991). https://doi.org/10.1080/01418639108224449.

[57] C.N. Hoth, P. Schilinsky, S. a Choulis, S. Balasubramanian, C.J. Brabec, Applications of Organic and Printed Electronics, 2013.

[58] M. Ito, C. Miyazaki, M. Ishizaki, M. Kon, N. Ikeda, T. Okubo, R. Matsubara, K. Hatta, Y. Ugajin, N. Sekine, Application of amorphous oxide TFT to electrophoretic display, J. Non. Cryst. Solids. (2008). https://doi.org/10.1016/j.jnoncrysol.2007.10.083.

[59] T. Kamiya, K. Nomura, H. Hosono, Present status of amorphous In-Ga-Zn-O thin-film transistors, Sci. Technol. Adv. Mater. (2010). https://doi.org/10.1088/1468- 6996/11/4/044305.

[60] J.H. Jeon, J. Kim, M.K. Ryu, Instability of an amorphous indium gallium zinc oxide TFT under bias and light illumination, J. Korean Phys. Soc. 58 (2011). https://doi.org/10.3938/jkps.58.158.

[61] H. Oh, S.M. Yoon, M.K. Ryu, C.S. Hwang, S. Yang, S.H.K. Park, Photon-accelerated negative bias instability involving subgap states creation in amorphous In-Ga-Zn-O thin film transistor, Appl. Phys. Lett. 97 (2010). https://doi.org/10.1063/1.3510471.

[62] K. Nomura, T. Kamiya, E. Ikenaga, H. Yanagi, K. Kobayashi, H. Hosono, Depth analysis of subgap electronic states in amorphous oxide semiconductor, a-In-Ga-Zn-O, studied by hard x-ray photoelectron spectroscopy, in: J. Appl. Phys., 2011. https://doi.org/10.1063/1.3560769.

[63] R. Khan, M. Ohtaki, S. Hata, K. Miyazaki, R. Hattori, Thermal Conductivity of Nano- Crystallized Indium-Gallium-Zinc Oxide Thin Films Determined by Differential Three-Omega Method, Nanomaterials. 11 (2021). https://doi.org/10.3390/nano11061547.

[64] M. Zhao, M. Xu, H. Ning, R. Xu, J. Zou, H. Tao, L. Wang, J. Peng, Method for Fabricating Amorphous Indium-Zinc-Oxide Thin-Film Transistors With Copper Source and Drain Electrodes, IEEE Electron Device Lett. (2015). https://doi.org/10.1109/LED.2015.2400632.

[65] T. Arai, Oxide-TFT technologies for next-generation AMOLED displays, J. Soc. Inf. Disp. 20 (2012). https://doi.org/10.1889/jsid20.3.156.

[66] W.S. Kim, Y.K. Moon, K.T. Kim, J.H. Lee, B. Du Ahn, J.W. Park, An investigation of contact resistance between metal electrodes and amorphous gallium-indium-zinc oxide (a-GIZO) thin-film transistors, in: Thin Solid Films, 2010. https://doi.org/10.1016/j.tsf.2010.02.044.

[67] S. Hu, Z. Fang, H. Ning, R. Tao, X. Liu, Y. Zeng, R. Yao, F. Huang, Z. Li, M. Xu, L. Wang, L. Lan, J. Peng, Effect of post treatment for cu-cr source/drain electrodes on a- igzo tfts, Materials (Basel). 9 (2016). https://doi.org/10.3390/ma9080623.

[68] J.R. Yim, S.Y. Jung, H.W. Yeon, J.Y. Kwon, Y.J. Lee, J.H. Lee, Y.C. Joo, Effects of metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor, Jpn. J. Appl. Phys. (2012). https://doi.org/10.1143/JJAP.51.011401.

[69] C.S. Youn, D.G. Lee, Effects of post heat treatment on the mechanical properties of cold-rolled Ti/Cu clad sheet, Metals (Basel). 10 (2020). https://doi.org/10.3390/met10121672.

[70] I. Fisher, M. Eizenberg, Copper ion diffusion in porous and nonporous SiO2-based dielectrics using bias thermal stress and thermal stress tests, Thin Solid Films. (2008). https://doi.org/10.1016/j.tsf.2007.10.011.

[71] K.-H. Choi, H.-K. Kim, Correlation between Ti source/drain contact and performance of InGaZnO-based thin film transistors, Appl. Phys. Lett. 102 (2013) 052103. https://doi.org/10.1063/1.4790357.

[72] L. Lan, M. Xu, J. Peng, H. Xu, M. Li, D. Luo, J. Zou, H. Tao, L. Wang, R. Yao, Influence of source and drain contacts on the properties of the indium-zinc oxide thin- film transistors based on anodic aluminum oxide gate dielectrics, in: J. Appl. Phys., 2011. https://doi.org/10.1063/1.3660791.

[73] S. Hu, H. Ning, K. Lu, Z. Fang, Y. Li, R. Yao, M. Xu, L. Wang, J. Peng, X. Lu, Mobility enhancement in amorphous in-Ga-Zn-O thin-film transistor by induced metallic in nanoparticles and Cu electrodes, Nanomaterials. 8 (2018). https://doi.org/10.3390/NANO8040197.

[74] M. Bellardita, A. Di Paola, S. Yurdakal, L. Palmisano, Preparation of catalysts and photocatalysts used for similar processes, in: Heterog. Photocatal. Relationships with Heterog. Catal. Perspect., 2019. https://doi.org/10.1016/B978-0-444-64015-4.00002- X.

[75] T. Toda, D. Wang, J. Jiang, M.P. Hung, M. Furuta, Quantitative analysis of the effect of hydrogen diffusion from silicon oxide etch-stopper layer into amorphous In-Ga-Zn- O on thin-film transistor, IEEE Trans. Electron Devices. 61 (2014). https://doi.org/10.1109/TED.2014.2359739.

[76] O. Çakır, Review of Etchants for Copper and its Alloys in Wet Etching Processes, Key Eng. Mater. 364–366 (2007). https://doi.org/10.4028/www.scientific.net/kem.364-366.460.

[77] K.R. Williams, K. Gupta, M. Wasilik, Etch rates for micromachining processing - Part II, J. Microelectromechanical Syst. 12 (2003). https://doi.org/10.1109/JMEMS.2003.820936.

[78] M. Georgiadou, Richard Alkire, Anisotropic Chemical Etching of Copper Foil, J. Electrochem. Soc. 140 (1993).

[79] H. Noma, T. Nakanishi, Etching process analysis based on etchant flow for high- density build-up substrate, in: Proc. 6th Electron. Packag. Technol. Conf. EPTC 2004, 2004. https://doi.org/10.1109/eptc.2004.1396620.

[80] S. Hu, H. Ning, K. Lu, Z. Fang, R. Tao, R. Yao, J. Zou, M. Xu, L. Wang, J. Peng, Effect of Al2O3 Passivation Layer and Cu Electrodes on High Mobility of Amorphous IZO TFT, IEEE J. Electron Devices Soc. 6 (2018). https://doi.org/10.1109/JEDS.2018.2820003.

[81] S. Hu, K. Lu, H. Ning, Z. Fang, X. Liu, W. Xie, R. Yao, J. Zou, M. Xu, J. Peng, Effect of ITO Serving as a Barrier Layer for Cu Electrodes on Performance of a-IGZO TFT, IEEE Electron Device Lett. 39 (2018). https://doi.org/10.1109/LED.2018.2800725.

[82] L.Y. Kim, O.K. Kwon, Effects of Stacked Mo-Ti/Cu Source and Drain Electrodes on the Performance of Amorphous In-Ga-Zn-O Thin-Film Transistors, IEEE Electron Device Lett. 39 (2018). https://doi.org/10.1109/LED.2017.2769669.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る