リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Renormalized nucleon isovector couplings from 2+1 flavor lattice QCD」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Renormalized nucleon isovector couplings from 2+1 flavor lattice QCD

Tsukamoto Natsuki 東北大学

2020.03.25

概要

Background
The nucleon has been investigated in various aspects for a long time since Rutherford had discovered the proton about 100 years ago. Nowadays the nucleon is known to be composed of quarks and gluons that are described by Quantum Chromodynamics (QCD in short), the first principle of the strong interaction. This implies that any features of the nucleon can be theoretically understood based on QCD. However, in practice, it is difficult to calculate the nucleon structure in QCD analytically. Therefore numerical simulations are actively performed though realistic numerical simulations have been only recently achieved. In this sense, the nucleon structure is not yet well understood theoretically.

The nucleon scalar and tensor couplings (gS and gT ) also should play important roles to constrain the limit of non-standard interactions mediated by undiscovered gauge bosons in the scalar and tensor channels. Furthermore, the tensor coupling has the same transformation properties under P and T discrete symmetries as the electric dipole moment (EDM) current. Thus the nucleon tensor isovector-coupling is also an important information regarding the size of neutron EDM.

The scalar and tensor isovector-couplings are so far not accessible in experiment. Although lattice determination of the scalar and tensor isovector-couplings have recently performed by several groups, the reliable value is given by a single group. Therefore further comprehensive studies of the nucleon isovector-couplings are still needed.

Content
The main purpose of this thesis is to evaluate the scalar and tensor couplings using domain-wall fermions (Chap. 4) and Wilson-clover fermions (Chap. 5). Our simulations using domain-wall fermions (DWFs) are performed at two different lattice spacings so that we can eliminate lattice artifacts from our lattice results. However, our DWF simulations are not performed at the physical point. Therefore there are a systematic uncertainties stemming from the chiral extrapolation.

On the other hand, our simulations using Wilson-clover fermions are performed at the physical point on a (10.8 fm)4 lattice at a single lattice spacing. Because of a huge physical volume, the statistical uncertainties on our results are significantly suppressed. We then obtain the precise value of the nucleon coupling constants from the latter simulations without the chiral extrapolation. Although we cannot eliminate the systematic uncertainty due to the presence of the lattice discretization, a typical magnitude of this uncertainty might be estimated in the former simulations using domain-wall fermions. In this sense, two simulations are complementary to each other.

Result
We summarize all obtained results of the isovector coupling constants in both cases of DWFs and the Wilson- clover fermions together with our previous results calculated with the HPCI configurations in Fig. 1. All our result (filled symbols) are barely consistent with the other group (open symbols) studies. It is worth noting that gA measured with the PACS10 configuration is consistent with the experimental value within a few percent precision. Therefore it is expected that the present calculations in the scalar and tensor channels also accurately predict their nucleon couplings. Using our obtained values of the scalar and tensor coupling constants, we also estimate the impact of our results in the context of the new physics research in this thesis.

参考文献

[1] A. Romer, Am. J. Phys. 65, 707 (1997).

[2] A. Czarnecki, W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 120, 202002 (2018), [1802.01804].

[3] V. Cirigliano, S. Gardner and B. R. Holstein, Prog. Part. Nucl. Phys. 71, 93 (2013).

[4] A. Courtoy, S. Baeßler, M. González-Alonso and S. Liuti, Phys. Rev. Lett. 115, 162001 (2015), [1503.06814].

[5] M. González-Alonso and J. Martin Camalich, Phys. Rev. Lett. 112, 042501 (2014), [1309.4434].

[6] B. Yoon et al., Phys. Rev. D 95, 074508 (2017).

[7] N. Hasan et al., Phys. Rev. D 99, 114505 (2019).

[8] C. Alexandrou et al., Phys. Rev. D 95, 114514 (2017), [1703.08788].

[9] S. Dürr, PoS LATTICE 2005, 021 (2006), [0509026].

[10] S. R. Sharpe, PoS LATTICE 2006, 022 (2006), [0610094].

[11] S. Aoki et al., 1902.08191.

[12] S. Weinberg, Phys. Rev. 112, 1375 (1958).

[13] T. Bhattacharya et al., Phys. Rev. D 85, 054512 (2012), [1110.6448].

[14] T. Lee and C. Yang, Phys. Rev. 104, 254 (1956).

[15] M. González-Alonso, O. Naviliat-Cuncic and N. Severijns, Prog. Part. Nucl. Phys. 104, 165 (2019), [1803.08732].

[16] M. Anselmino et al., Nucl. Phys. B - Proc. Suppl. 191, 98 (2009).

[17] I. Bedlinskiy et al., Phys. Rev. Lett. 109, 112001 (2012).

[18] C. Adolph et al., Phys. Lett. B 736, 124 (2014).

[19] V. M. Belyaev, B. L. Ioffe and Y. I. Kogan, Phys. Lett. B 151, 290 (1985).

[20] M. Tanabashi et al., Phys. Rev. D 98, 030001 (2018).

[21] A. Airapetian et al., Phys. Rev. D 71, 1 (2005), [0407032].

[22] C. A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006), [0602020].

[23] E. Farhi, V. V. Khoze and R. Singleton, Phys. Rev. D 47, 5551 (1993).

[24] R. Martínez, M. A. Pérez and N. Poveda, Eur. Phys. J. C 53, 221 (2008).

[25] M. Srednicki, Quantum Field Theory (Cambridge University Press, 2007).

[26] P. Weisz and R. Wohlert, Nucl. Phys. B 236, 397 (1984).

[27] M. Lüscher and P. Weisz, Commun. Math. Phys. 97, 59 (1985).

[28] Y. Iwasaki, 1111.7054.

[29] K. Symanzik, Nucl. Phys. B 226, 187 (1983).

[30] S. Chandrasekharan and U. J. Wiese, Prog. Part. Nucl. Phys. 53, 373 (2004), [0405024].

[31] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B 259, 572 (1985).

[32] S. Aoki and Y. Kuramashi, Phys. Rev. D 68, 094019 (2003), [0306015].

[33] M. Lüscher, S. Sint, R. Sommer, P. Weisz and U. Wolff, Nucl. Phys. B 491, 323 (1997).

[34] S. Sint and P. Weisz, Nucl. Phys. B - Proc. Suppl. 63, 856 (1998).

[35] M. Lüscher and P. Weisz, Nucl. Phys. B 479, 429 (1996).

[36] Y. Taniguchi and A. Ukawa, Phys. Rev. D 58, 114503 (1998), [9806015].

[37] C. Morningstar and M. Peardon, Phys. Rev. D 69, 054501 (2004), [0311018].

[38] H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 (1981).

[39] K. Jansen, Phys. Rep. 273, 1 (1996), [9410018].

[40] D. B. Kaplan, Phys. Lett. B 288, 342 (1992).

[41] T. Blum et al., Phys. Rev. D 69, 074502 (2004), [0007038].

[42] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, J. Chem. Phys. 21, 1087 (1953).

[43] K. Sasaki and S. Sasaki, Phys. Rev. D 72, 034502 (2005), [0503026].

[44] F. Fucito, G. Martinelli, C. Omero, G. Parisi and R. Petronzio, Nucl. Phys. B 210, 407 (1982).

[45] G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa and A. Vladikas, Nucl. Phys. B 445, 81 (1995), [9411010].

[46] Y. Aoki et al., Phys. Rev. D 78, 054510 (2008).

[47] C. Sturm et al., Phys. Rev. D 80, 014501 (2009), [0901.2599].

[48] L. G. Almeida and C. Sturm, Phys. Rev. D 82, 054017 (2010), [1004.4613].

[49] P. Boucaud et al., Phys. Lett. B 575, 256 (2003), [0307026].

[50] P. Boucaud et al., Phys. Rev. D 74, 034505 (2006).

[51] B. Blossier et al., Phys. Rev. D 91, 114507 (2015).

[52] D. Becirevic et al., Phys. Rev. D 60, 094509 (1999).

[53] C. Roiesnel, J. P. Leroy, J. Micheli, O. Pène and J. Rodríguez-Quintero, Phys. Rev. D 61, 14508 (2000).

[54] Y. Aoki et al., Phys. Rev. D 83, 074508 (2011).

[55] S. Sasaki, Phys. Rev. D 96, 074509 (2017), [1708.04008].

[56] S. Sasaki, K. Orginos, S. Ohta and T. Blum, Phys. Rev. D 68, 054509 (2003), [0306007].

[57] C. Alexandrou, S. Güsken, F. Jegerlehner, K. Schilling and R. Sommer, Nucl. Phys. B 414, 815 (1994).

[58] C. Allton et al., Phys. Rev. D 78, 114509 (2008), [0804.0473].

[59] T. Yamazaki et al., Phys. Rev. D 79, 114505 (2009), [0904.2039].

[60] Y. Aoki et al., Phys. Rev. D 82, 014501 (2010).

[61] C. Alexandrou, G. Koutsou, J. W. Negele, Y. Proestos and A. Tsapalis, Phys. Rev. D 83, 014501 (2011), [1011.3233].

[62] W. Detmold, W. Melnitchouk and A. W. Thomas, Eur. Phys. J. A 18, 269 (2003).

[63] N. Yamanaka, S. Hashimoto, T. Kaneko and H. Ohki, Phys. Rev. D 98, 054516 (2018).

[64] K. I. Ishikawa et al., Phys. Rev. D 99, 014504 (2019), [1807.06237].

[65] K. I. Ishikawa et al., PoS LATTICE 2015, 075 (2015), [1511.09222].

[66] K. I. Ishikawa et al., Phys. Rev. D 98, 074510 (2018), [1807.03974].

[67] E. Shintani, K.-I. Ishikawa, Y. Kuramashi, S. Sasaki and T. Yamazaki, Phys. Rev. D 99, 014510 (2019), [1811.07292].

[68] Y. Taniguchi, PoS LATTICE 2012, 236 (2013), [1303.0104].

[69] C. C. Chang et al., Nature 558, 91 (2018), [1805.12130].

[70] R. Gupta et al., Phys. Rev. D 98, 034503 (2018), [1806.09006].

[71] T. Harris et al., Phys. Rev. D 100, 034513 (2019), [1905.01291].

[72] H. Ohno et al., Phys. Rev. D 84, 094504 (2011), [1104.3384].

[73] P. M. Cardoso Dias and A. Shimony, Adv. Appl. Math. 2, 172 (1981).

[74] M. Asakawa, Y. Nakahara and T. Hatsuda, Prog. Part. Nucl. Phys. 46, 459 (2001).

[75] Y. Burnier and A. Rothkopf, Phys. Rev. Lett. 111, 182003 (2013).

[76] J. Otsuki, M. Ohzeki, H. Shinaoka and K. Yoshimi, Phys. Rev. E 95, 061302 (2017), [1702.03056].

[77] M. Lüscher and P. Weisz, Nucl. Phys. B 384, 168 (1992), [9207009v1].

[78] S. Sint, Nucl. Phys. B - Proc. Suppl. 42, 835 (1995), [9312079].

[79] M. Della Morte, R. Hoffmann and R. Sommer, JHEP 07, 689 (2005), [0503003].

[80] M. Della Morte, R. Sommer and S. Takeda, Phys. Lett. B 672, 407 (2009), [0807.1120].

[81] K. I. Ishikawa et al., PoS LATTICE 2015, 271 (2016), [1511.08549].

[82] L. Chimirri et al., PoS LATTICE 2019, 212 (2019), [1910.06759].

[83] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Phys. Rev. Lett. 118, 082002 (2017), [1606.08659].

[84] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, JHEP 10, 076 (2014), [1402.6611].

[85] J. A. Gracey, Phys. Lett. B 488, 175 (2000), [0007171v1].

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る