リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Long Time Constant May Endorse Sharp Waves and Spikes Than Sharp Transients in Scalp Electroencephalography: A Comparison of Both After-Slow Among Different Time Constant and High-Frequency Activity Analysis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Long Time Constant May Endorse Sharp Waves and Spikes Than Sharp Transients in Scalp Electroencephalography: A Comparison of Both After-Slow Among Different Time Constant and High-Frequency Activity Analysis

Sultana, Shamima 京都大学 DOI:10.14989/doctor.k23816

2022.03.23

概要

Background:
Appropriate Electroencephalography (EEG) readings are crucial for making the diagnosis of epilepsy, especially for the detection of epileptiform discharges (EDs): sharp waves and spikes. However, only by visual inspection it is still inaccurate even for certified electroencephalographers to distinguish EDs from morphologically resembling normal or non-specific sharply contoured waveforms, i.e., sharp transients (Sts). Under long time constant (TC) settings (e.g., 2 s), slow activities are not attenuated as compared with the conventional settings (e.g., 0.1—0.3 s). Long TC may be beneficial for detecting the after-slow activity of EDs. However, the degree of detection of after-slow activity of EDs under different TC conditions has not been systematically analyzed and there was no study about the endorsement of the definition of Sts with lesser after-slow as opposed to EDs.

Objective:
In this study, the chief question was whether long TC is useful for detecting the after-slow activity of EDs and for differentiating EDs from Sts. The classification of these two groups was also endorsed by high-frequency activity (HFA) that is considered to have a selective association with EDs.

Methods:
Sixty eight after-slow activities preceded by 32 EDs (26 sharp waves and six spikes) and those of 36 Sts were collected from 52 patients with partial and generalized epilepsy (22 men, 30 women; mean age 39.08 ± 13.13 years) defined by visual inspection. Frequency of HFA associated with the apical component of EDs and Sts was investigated to endorse the EDs selectively. After separating nine Sts that were labeled by visual inspection but did not fulfill the amplitude criteria for after-slow of Sts, finally 59 activities (32 EDs and 27 Sts) were analyzed about the total area of after-slow under three TCs (long: 2 s; conventional: 0.3 s; and short: 0.1 s).

Results:
1) The total area of after-slow in all 32 EDs under TC 2 s was significantly larger than those under TC 0.3 s and 0.1 s (p < 0.001). Conversely, no significant differences were observed in the same parameter of 27 Sts among the three different TCs.
2) Compared to Sts, HFA was found significantly more often with the apical component of EDs (p < 0.05). 3) Regarding separated nine Sts, the total area of after-slow showed a similar tendency to that of 27 Sts under three different TCs.

Conclusion:
These results suggest that long TC could be useful for selectively detecting EDs by differentiating from Sts. These findings are concordant with the results of the HFA analysis, endorsing the current operational definitions of EDs and Sts, and also the International Federation of Clinical Neurophysiology guidelines.

参考文献

Aykut, M., Tankisi, H.,Duez, L., Sejer, V., Udupi, A., Wennberg, R., et al.(2020). Clinical Neurophysiology Optimized set of criteria for defining interictal epileptiform EEG discharges. Clin. Neurophysiol. 131, 2250-2254. doi:10.1016/j.clinph.2020.06.026

Beaussart, M.(1972). Benign epilepsy of children with rolandic (centro-temporal) paroxysmal foci a clinical entity, study of 221 cases. Epilepsia 13, 795-811. doi:10.111l/j.1528-1157.1972.tb05164.x

Brazier, M. A. B., Cobb, W. A., Fischgold, H. Gastaut, H. Gloor, P., Hess, R., et al.(1961).Preliminary proposal for an EEG terminology by the terminology committee of the international federation for electroencephalography and clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol.13,646-65〇.

Constantino, T., and Rodin, E. (2012). Peri-ictal and interictal, intracranial infraslow activity. J. Clin. Neurophysiol. 29, 298-308. doi:10.1097/WNP.ObOl363182624289

Dingle, A. A., Jones, R. D., Carroll,G. J., and Fright, W. R. A.(1993). Multistage system to detect epileptiform activity in the EEG. IEEE Trans. Biomed. Eng. 40, 1260-1268. doi: 10.1109/10.250582

Engel, J. J.(1989). Seizures and Epilepsy, 1st Edn. Philadelphia, PA: F. A. Davis Company.

Fisch, B. J., and Spehlmann, R.(1999). Fisch and Spehlmann’s EEG Primer: Basic Principles of Digital and Analog EEG, 3rd Edn. Amsterdam: Elsevier.

Gil-Nagel, A., and Abou-Khalil,B. (2012). ^Electroencephalography and video­electroencephalography,H in Handbook Clinical Neurology, Vol. 107, eds H. Stefan and W. H. Theodore (Amsterdam: Elsevier), 323-345. doi:10.1016/ B978-0-444-52898-8.00020-3

Janca, R., Jezdik, P., Cmejla, R., Tomasek, M., Worrell,G. A., Stead, M., et al. (2014). Detection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordings. Brain Topogr. 28,172-183. doi:10.1007/sl0548-014-0379-1

Kobayashi, K., Jacobs, J., and Gotman, J. (2009). Detection of changes of high- frequency activity by statistical time-frequency analysis in epileptic spikes. Clin. Neurophysiol. 120,1070-1077. doi:10.1016/j.clinph.2009.03.020

Kobayashi, K., Oka, M., Akiyama, T., Inoue, T., Abiru, K., Ogino, T., et al.(2004). Very fast rhythmic activity on scalp EEG associated with epileptic spasms. Epilepsia 45, 488-496. doi:10.1111/j.0013-9580.2004.45703.x

Liiders, H., Lesser, R. P., Dinner, D. S., and Morris, H. H.(1987). aBenign focal epilepsy of childhood^ in Epilepsy Electroclinical Syndromes, eds H. Liiders and R. P. Lesser (London: Springer), 303-346. doi: 10.1007/978-1-4471-140 1-7_13

Matsumoto, A., Brinkmann, B. H., Stead, S. M., Matsumoto, J., Kucewicz, M. T., Marsh, W. R., et al.(2013). Pathological and physiological high-frequency oscillations in focal human epilepsy. J. Neurophysiol.110,1958-1964. doi:10. 1152/jn.OO341.2013

Maus, D., Epstein, C. M„ and Herman, S. T. (2011).“Digital EEG,” in Niedermeyer's Electro encephalogr. Basic Principles of Clinical Application Relation Fields, 6th Edn, eds E. Niedermeyer, D. L. Schomer, and F. H. L. da Silva (Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins), 119-141.

Misra, U. K., and Kalita, J. (2005). Clinical Electroencephalography, 1st Edn. Amsterdam: Elsevier India Pvt. Limited.

Neckelmann, D., Amzica, F., and Steriade, M. (2000). Changes in neuronal conductance during different components of cortically generated spike-wave seizures. Neuroscience 96,475-485. doi:10.1016/S0306-4522(99)00571-0

Noachtar, S., Binnie, C., Ebersole, J., Mauguiere, F., Sakamoto, A., and Westmoreland, B.(1999). A Glossary of terms most commonly used by clinical electroencephalographers and proposal for the report form for the EEG Findings. The international federation of clinical neurophysiology. Electro encephalogr. Clin. Neurophysiol. 52, 21-41. doi:10.1055/s-2003-812583

Nuwer, M.(1997). Assessment of digital EEG, quantitative EEG, and EEG brain mapping: report of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology 49, 277-292.

Nuwer, M. R., Comi, G., Emerson, R., Fuglsang-Frederiksen, A., Gu^rit, J.-M., Hinrichs, H., et al.(1998). IFCN standards for digital recording of clinical EEG. Electroencephalogr. Clin. Neurophysiol. 106,259-261. doi:10.1016/S0013- 4694(97)00106-5

Rakhade, S. N., Shah, A. K., Agarwal,R.,沿〇, B., Asano, E., and Loeb, J. A. (2007). Activity-dependent gene expression correlates with interictal spiking in human neocortical epilepsy. Epilepsia 48, 86-95. doi:10.1111/i. 1528-1167.2007.01 294.x

Selwa, L. M. (2010). “Epileptiform activity, seizures and epilepsy syndromes,n in Readiing EEGs A Pract. Approach, eds L. J. J. Greenfield, J. D. Geyer, and P. R. Carney (Philadelphia, PA: Lippincott Williams & Wilkins), 93-134.

Shibata, T., Yoshinaga, H., Akiyama, T., and Kobayashi, K. (2016). A study on spike focus dependence of high-frequency activity in idiopathic focal epilepsy in childhood. Epilepsia Open 1,121-129. doi:10.1002/epi4.12014

Silverman, D.(1965). The anterior temporal electrode and the ten-twenty system. Am. J. EEG Technol. 5,11-14. doi:10.1080/00029238.1965.11080641

Sinha, S. R., Sullivan, L., Sabau, D., San-Juan, D., Dombrowski, K. E., Halford, J. J., et al.(2016). American clinical neurophysiology society guideline 1:minimum technical requirements for performing clinical electroencephalography. J. Clin. Neurophysiol. 33,303-307. doi:10.1097/WNP.0000000000000308

Urrestarazu, E., Jirsch, J. D., LeVan, P., Hall, J., and Gotman, J. (2006). High- frequency intracerebral EEG activity (100-500 Hz) following interictal spikes. Epilepsia 47,1465-1476. doi: 10.111l/j.1528-1167.2006.00618.x

Von Ellenrieder, N., Frauscher, B., Dubeau, F., and Gotman, J. (2016). Interaction with slow waves during sleep improves discrimination of physiologic and pathologic high-frequency oscillations (80-500 Hz). Epilepsia 57, 869-878. doi: 10.1111/epi.13380

White, J. C., Langston, J. W., and Pedley, T. A.(1977). Benign epileptiform transients of sleep: clarification of the small sharp spike controversy. Neurology 27,1061-1068. doi:10.1212/wnl.27.11.1061

Winesett, S., and Benbadis, S. R. (2008). Which electroencephalogram patterns are commonly misread as epileptiform? TouchneurologyCom 3,101-104. doi: 10.17925/ENR.2008.03.02.101

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る