リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Novel functional properties of charge-transition oxides synthesized under high pressure」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Novel functional properties of charge-transition oxides synthesized under high pressure

Shimakawa, Yuichi 京都大学 DOI:10.2109/jcersj2.23115

2023.10.01

概要

Oxides containing unusually high-valence transition-metal ions often exhibit charge transitions to relieve the electronic instabilities. A-site-ordered quadruple perovskites LnCu₃Fe₄O₁₂ with the unusually high-valence Fe^{3.75+}, which are synthesized under high-pressure conditions, show intermetallic-charge-transfer transitions. In this review article, novel thermo-related functional properties induced by the charge transitions in LnCu₃Fe₄O₁₂ are highlighted. A large negative-thermal-expansion behavior was observed at the intermetallic-charge-transfer transition temperature. The negative-thermal-expansion property is primarily caused by the size effect of constituent ions by the charge changes. The property is useful for developing materials to compensate the normal positive thermal expansion. Significant latent heat was also found to be provided by the intermetallic-charge-transfer transition in LnCu₃Fe₄O₁₂. The large latent heat is considered to be related with unusual first-order magnetic entropy change induced by the charge transition. The large entropy change can be utilized for thermal control through a caloric effect, which can make effective energy systems for thermal energy storage and refrigeration.

参考文献

Fig. 8. Temperature dependence of the refined Fe3+ magnetic

moment in NdCu3Fe4O12. The fitting for the refined moments

with an S = 5/2 Brillouin function is also shown in a dashed

curve.

expected to be RIn(2S + 1) = 79 J K¹1 kg¹1. The value is

more than 90 % of the observed total entropy change, and

thus, most of the magnetic entropy is concluded to be

responsible for the total entropy change. In normal secondorder magnetic transitions the magnetic entropies are gradually changed below the magnetic transition temperatures.

In the present NdCu3Fe4O12, in contrast, the magnetic

entropy is abruptly yielded by the unusual first-order

magnetic transition induced by the intermetallic-chargetransfer transition.

Because the intermetallic-charge-transfer transition temperature of LnCu3Fe4O12 is changed by the chemical substitution at the A-site,24)­26),33) similar fine control of the

effective operating temperature for the thermal control by

the caloric effect is also possible.

1) J. B. MacChesney, R. C. Sherwood and J. F. Potter,

J. Chem. Phys., 43, 1907­1913 (1965).

2) M. Takano, N. Nakanishi, Y. Takeda, S. Naka and T.

Takada, Mater. Res. Bull., 12, 923­928 (1977).

3) Y. Takeda, S. Naka, M. Takano, T. Shinjo, T. Takada

and M. Shimada, Mater. Res. Bull., 13, 61­66 (1978).

4) Y. Shimakawa and M. Takano, Z. Anorg. Allg. Chem.,

635, 1882­1889 (2009).

5) W. T. Chen, T. Saito, N. Hayashi, M. Takano and Y.

Shimakawa, Sci. Rep.-UK, 2, 449 (2012).

6) Y. Shimakawa, J. Phys. D Appl. Phys., 48, 504006

(2015).

7) F. D. Romero and Y. Shimakawa, Chem. Commun., 55,

3690­3696 (2019).

8) M. Takano, J. Kawachi, N. Nakanishi and Y. Takeda,

J. Solid State Chem., 39, 75­78 (1981).

9) P. D. Battle, T. C. Gibb and S. Nixon, J. Solid State

Chem., 77, 124­131 (1988).

10) S. Kawasaki, M. Takano and Y. Takeda, Solid State

Ionics, 108, 221­226 (1998).

11) I. Yamada, K. Takata, N. Hayashi, S. Shinohara, M.

Azuma, S. Mori, S. Muranaka, Y. Shimakawa and M.

Takano, Angew. Chem. Int. Edit., 47, 7032­7035

(2008).

775

JCS-Japan

Shimakawa: Novel functional properties of charge-transition oxides synthesized under high pressure

12) Y. W. Long, N. Hayashi, T. Saito, M. Azuma, S.

Muranaka and Y. Shimakawa, Nature, 458, 60­63

(2009).

13) T. Takeda, R. Kanno, Y. Kawamoto, M. Takano, S.

Kawasaki, T. Kamiyama and F. Izumi, Solid State Sci.,

2, 673­687 (2000).

14) P. M. Woodward, D. E. Cox, E. Mosphopoulou, A. W.

Sleight and S. Morimoto, Phys. Rev. B, 62, 844­855

(2000).

15) T. Seda and G. R. Hearne, J. Phys.-Condens. Mat., 16,

2707­2718 (2004).

16) M. Azuma, S. Carlsson, J. Rodgers, M. G. Tucker, M.

Tsujimoto, S. Ishiwata, S. Isoda, Y. Shimakawa, M.

Takano and J. P. Attfield, J. Am. Chem. Soc., 129,

14433­14436 (2007).

17) X.-Y. Liu, “Modern Inorganic Synthetic Chemistry”,

2nd ed., ScienceDirect (2017) pp. 105­141.

18) M. Takano, Y. Takeda and O. Ohtaka, in “Encyclopedia

of Inorganic Chemistry”, ed. R. B. King, John Wiley &

Sons, Chichester (1994) Vol. 3, p. 1372.

19) Y. Shimakawa, Inorg. Chem., 47, 8562­8570 (2008).

20) A. N. Vasil’ev and O. S. Volkova, Low Temp. Phys., 39,

895­914 (2007).

21) P. Woodward, Acta Crystallogr. B, 53, 32­43 (1997).

22) P. Woodward, Acta Crystallogr. B, 53, 44­66 (1997).

23) C. J. Howard and H. T. Stokes, Acta Crystallogr. B, 54,

782­789 (1998).

24) W. Long, T. Saito, T. Tohyama, K. Oka, M. Azuma and

Y. Shimakawa, Inorg. Chem., 48, 8489­8492 (2009).

25) I. Yamada, H. Etani, K. Tsuchida, S. Marukawa, N.

Hayashi, T. Kawakami, M. Mizumaki, K. Ohgushi, Y.

Kusano, J. Kim, N. Tsuji, R. Takahashi, N. Nishiyama,

T. Inoue, T. Irifune and M. Takano, Inorg. Chem., 52,

13751­13761 (2013).

26) Y. Shimakawa, M. Lufaso and P. M. Woodward, APL

Mater., 6, 086106 (2018).

27) Y.-Y. Chin, H.-J. Lin, Z. Hu, Y. Shimakawa and C.-T.

Chen, Physica B, 568, 92­95 (2019).

28) M. Mizumaki, W.-T. Chen, T. Saito, I. Yamada, J. P.

Attfield and Y. Shimakawa, Phys. Rev. B, 84, 094418

(2011).

29) Y. Shimakawa and M. Mizumaki, J. Phys.-Condens.

Mat., 26, 473203 (2014).

30) G. D. Barrera, J. A. O. Bruno, T. H. K. Barron and N. L.

Allan, J. Phys.-Condens. Mat., 17, R217­R252 (2005).

31) M. Miller, C. W. Smith, D. S. Mackenzie and K. E.

Evans, J. Mater. Sci., 44, 5441­5451 (2009).

32) M. B. Jakubinek, C. A. Whitman and M. A. White,

J. Therm. Anal. Calorim., 99, 165­172 (2010).

33) M. W. Lufaso and P. M. Woodward, Acta Crystallogr. B,

57, 725­738 (2001).

34) M. W. Lufaso, P. W. Barnes and P. M. Woodward, Acta

Crystallogr. B, 62, 397­410 (2006).

35) I. D. Brown, A. Dabkowski and A. McCleary, Acta

Crystallogr. B, 53, 750­761 (1997).

36) R. Shannon, Acta Crystallogr. A, 32, 751­767 (1976).

37) Y. Kosugi, M. Goto, Z. Tan, A. Fujita, T. Saito, T.

Kamiyama, W. T. Chen, Y. C. Chuang, H. S. Sheu,

D. Kan and Y. Shimakawa, Adv. Funct. Mater., 31,

2009476 (2021).

38) A. Gschneidner, V. K. Pecharsky and A. O. Tsokol, Rep.

Prog. Phys., 68, 1479­1539 (2005).

39) M. Valant, Prog. Mater. Sci., 57, 980­1009 (2012).

40) S. Fähler, U. K. Rößler, O. Kastner, J. Eckert, G.

Eggeler, H. Emmerich, P. Entel, S. Müller, E. Quandt

and K. Albe, Energy Technol., 14, 10­19 (2012).

41) X. Moya, S. Kar-Narayan and N. D. Mathur, Nat.

Mater., 13, 439­450 (2014).

42) L. Mañosa and A. Planes, Adv. Mater., 29, 1603607

(2017).

43) A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore

and N. D. Mathur, Science, 311, 1270­1271 (2006).

44) B. Neese, B. Chu, S. G. Lu, Y. Wang, E. Furman and

Q. M. Zhang, Science, 321, 821­823 (2008).

45) D. Matsunami and A. Fujita, Appl. Phys. Lett., 106,

042901 (2015).

46) L. Mañosa, D. González-Alonso, A. Planes, E. Bonnot,

M. Barrio, J. L. Tamarit, S. Aksoy and M. Acet, Nat.

Mater., 9, 478­481 (2010).

47) D. Matsunami, A. Fujita, K. Takenaka and M. Kano,

Nat. Mater., 14, 73­78 (2015).

48) Y. Shimakawa and Y. Kosugi, J. Mater. Chem. A,

Advanced Article (2023).

49) T. Samanta, P. Lloveras, A. U. Saleheen, D. L.

Lepkowski, E. Kramer, I. Dubenko, P. W. Adams,

D. P. Young, M. Barrio, J. L. Tamarit, N. Ali and S.

Stadler, Appl. Phys. Lett., 112, 021907 (2018).

50) W. T. Chen, Y. Long, T. Saito, J. P. Attfield and Y.

Shimakawa, J. Mater. Chem., 20, 7282­7286 (2010).

51) Y. Kosugi, M. Goto, Z. Tan, D. Kan, M. Isobe, K.

Yoshii, M. Mizumaki, A. Fujita, H. Takagi and Y.

Shimakawa, Sci. Rep.-UK, 11, 12682 (2021).

Yuichi Shimakawa is a professor in Institute of Chemical Research, Kyoto University. He

received his Ph.D. from Kyoto University in 1993. He was a Principal Researcher in

Fundamental Research Laboratories, NEC Corporation, and then joined Kyoto University

as a Professor in 2003. His research interests are in the solid-state chemistry and materials

science of transition metal oxides, which have interesting and useful properties. The

research focuses on the search for new oxide materials with novel functional properties. He

is a Fellow of the Royal Society of Chemistry, UK.

776

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る