リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「堆積物中の環境DNAの性質解明と過去環境復元への応用」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

堆積物中の環境DNAの性質解明と過去環境復元への応用

Sakata, Masayuki 神戸大学

2021.03.25

概要

The loss of biodiversity has been one of major concerns of the global ecosystem, and it is caused by increased or altered human activities and the associated environmental changes. In particular, almost one in three freshwater species are threatened with extinction in freshwater environments. Not only monitoring the organisms presently inhabiting, but also reconstructing how organisms community composition and population size have changed in the past along with environmental change will contribute to conserve biodiversity in freshwater ecosystems. Reconstruction of past biological information has been carried out on taxa with traces of shells, pollen fossils or macroremains that are hard to be decomposed and remain in the sediments, by visual inspection of these traces in past sediments and analysis of the DNA obtained from them. However, it was difficult to reconstruct the past biological information in taxa with few macroremain in the sediment represented by fish. Although sedimentary environmental DNA (eDNA) analysis of macroorganisms in the sediments may be used to reconstruct the past fish information, and actually, a few attempts have been made to reconstruct fish information using sedimentary eDNA from sediment cores; however, it has been conducted in relatively suitable environment for preservation of eDNA such as low-temperature or anoxic environments. By contrast, there is no report of sedimentary eDNA detection from past sediment cores in temperate lakes, where eDNA degradation seems relatively rapid. In addition, whereas aqueous eDNA (eDNA in the water) analysis is known to be useful for biomonitoring for conservation, it has not been investigated whether sedimentary eDNA is suitable for biodiversity monitoring. The purpose of this thesis was to examine to the applicability of sedimentary eDNA analysis for reconstructing the past fish information in temperate lake ecosystems using sediment cores. For this purpose, a series of studies were conducted as follows. Firstly, the decay rate of fish eDNA in sediments was examined to clarify detectable period of it. Secondly, the spatial heterogeneity of sedimentary eDNA was investigated for better selection of sampling site. Thirdly, the effectiveness of sedimentary eDNA analysis examined to biodiversity monitoring, in the natural environments. Finally, based on those results of investigations, the applicability of sedimentary eDNA analysis for reconstructing the past biological information in fish was examined in a temperate lake.

In Chapter 2, to clarify the decay rate of sedimentary eDNA, comparative experiments between sedimentary and aqueous eDNA on the decay rates were conducted in the laboratory. Next, to clarify the biological information retained in sedimentary eDNA both qualitatively and quantitatively, fish eDNA concentrations in sediment and water samples collected simultaneously from a natural lake were compared, and the eDNA metabarcoding results for fish species were also compared. The results demonstrated that: l)the decay rate of sedimentary eDNA was lower than that of aqueous eDNA; 2) sedimentary eDNA concentration was higher than aqueous eDNA concentration; and 3) the species composition obtained by metabarcoding was not significantly different between sediment and water; however, some species were detected only in sediment or water samples. The low decay rate of sedimentary eDNA could be due to the adsorption of eDNA onto the sediment particles and the resulting suppression of degradation, and it would make the high concentration of sedimentary eDNA compared to aqueous eDNA. Although the species composition was not significantly different between sample types, some species, such as rare species with small populations, were detected either in sediment or water samples. Therefore, biological information from water and sediment samples could be complementary because sedimentary eDNA reflects a longer timescale, whereas aqueous eDNA reflects a wider spatial scale.

In Chapter 3, to investigate the difference of detected fish composition between sampling positions at a single site in a natural river, sedimentary eDNA metabarcoding were conducted, and the number and composition of detected species were compared between sampling positions in a single site. In addition, to evaluate the effectiveness of sedimentary eDNA analysis for biomonitoring, the detected number of species was compared between sedimentary and aqueous eDNA metabarcoding. As a result, the fish compositions detected by sedimentary eDNA metabarcoding were different between sampling positions despite the short sampling distance. This result suggested spatially heterogeneous distribution of sedimentary eDNA. In addition, the number of species detected by sedimentary eDNA metabarcoding was equivalent to that by aqueous eDNA metabarcoding, which has already shown the effectiveness for biodiversity monitoring. The different time-scale between sedimentary and aqueous eDNA would explain this. In consequence, the most effective eDNA metabarcoding methods to obtain the maximum number of species will include to use both aqueous and sedimentary eDNA.

In Chapter 4, the applicability of sedimentary eDNA analysis to reconstruct the past biological information of fish was examined to target two fish species, Plecoglossus altivelis and Gymnogobius isaza, that inhabit Lake Biwa. Both fish species are chosen as target species because those are native species in Lake Biwa and have always been present in Lake Biwa for about the past 100 years, when they can be reconstructed by a sediment core. In addition, the relationship between fluctuations of sedimentary eDNA concentrations and that of recorded hiomass was investigated in P. altivelis. A sediment core was collected at offshore in the northern area of Lake Biwa, and sedimentary eDNA was extracted from the separated sediment layers. Sedimentary eDNA detection was conducted to two fish species. As the results, the P. altivelis and G. isaza DNA were detected by sedimentary eDNA analysis method from past sediment layers up to approximately 100 and 30 years ago, respectively. The detection of these fish sedimentary eDNA supports that the long-term persistence of sedimentary eDNA in marine and freshwater sediments as previously reported, and suggests that past fish eDNA can be preserved in sediments for a long time. Therefore, sedimentary eDNA analysis method can be applicable to the reconstruction of past biological information on fishes. Although the positive relationship between CPUE and sedimentary eDNA concentrations in P. altivelis was suggested, the relationship was not statistically significant. This result may imply that sedimentary eDNA signatures track temporal variation in fish abundance. To perform more robust statistical analysis, increasing sedimentary eDNA detection will be necessary. Chapter 4 demonstrated a proof of concept that fish sedimentary eDNA can be detected in a temperate lake, which is the main purpose of this thesis. However, in the future, to enhance the detection accuracy of this analysis method, it would be required that increasing sampling efforts.

Through overall the thesis, sedimentary eDNA characteristics of the decay rate and the spatial heterogeneity were revealed through the control experiment and field surveys, and the applicability of sedimentary eDNA as a new method for reconstructing the past biological information of macroorganisms in temperate lake was confirmed. Sedimentary eDNA was usefill for reconstructing the past fish information. This is because sedimentary eDNA has the low decay rate and can be detectable in the past sediments for a long period of time. However, in the case of Chapter. 2, based on the degradation model constructed, fish sedimentary epNA could become undetectable in about 1.5 years by degradation. Although there may be differences in initial concentrations and target species, sedimentary eDNA was preserved up to 100 years in a field as shown in Chapter 4. This suggests that eDNA in sediments may shift to a less degradable state as sedimentation progresses and be preserved for a long time. Sedimentary eDNA will provide different species composition from aqueous eDNA in biodiversity monitoring. In biodiversity monitoring, using both sedimentary eDNA and aqueous eDNA metabarcoding can provide the maximum number of species. In addition, sedimentary eDNA analysis not only complements aqueous eDNA analysis but would be also used for different purposes or instead of aqueous eDNA. Contrary to the species that can be detected by aqueous eDNA metabarcoding have seasonal variations (e.g. caused by migratoiy species), sedimentary eDNA analysis methods may be applied to detect species regardless of the season due to its low decay rate. Sedimentary eDNA analysis provides the past fish information that has been a gap in the reconstruction of past communities to date in temperate lake ecosystems. Combining information on macroorganisms from sedimentary eDNA analysis with phytoplankton, zooplankton and algae information from conventional analyses of macroremains and fossils may allow for reconstruction of the past biological information across multiple trophic levels. Furthermore, by using information on trophic conditions in the lake from organic compound analysis, vegetation in the catchment area from pollen fossil analysis, and changes in surrounding land use from heavy metal analysis, it would allow the reconstruction of not only the biotic environment within the lake but also the biotic and abiotic environments inside and outside the lake. In the future, such attempts are expected to contribute to reconstruct the overall dynamics of ecosystems and their supporting environment in the past.

この論文で使われている画像

参考文献

1. Anderson-Carpenter, L. L., McLachlan, J. S., Jackson, S. T., Kuch, M., Lumibao, C. Y., & Poinar, H. N. (2011). Ancient DNA from lake sediments: Bridging the gap between paleoecology and genetics. BMC Evolutionary Biology, 11(1). https://doi.org/10.1186/1471-2148-11-30

2. Andruszkiewicz Allan, E., Zhang, W. G., Lavery, A., & Govindarajan, A. (2020). Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environmental DNA. https://doi.org/10.1002/edn3.141

3. Andruszkiewicz, E. A., Sassoubre, L. M., & Boehm, A. B. (2017). Persistence of marine fish environmental DNA and the influence of sunlight. PLoS ONE, 12(9), e0185043. https://doi.org/10.1371/journal.pone.0185043

4. Appleby, P. G. (2001). Chronostratigraphic Techniques in Recent Sediments. In Tracking Environmental Change Using Lake Sediments (pp. 171–203). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47669-x_9

5. Appleby, P. G., & Oldfield, F. (1978). The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 5(1), 1–8. https://doi.org/10.1016/S0341-8162(78)80002-2

6. Bálint, M., Bahram, M., Eren, A. M., Faust, K., Fuhrman, J. A., Lindahl, B., … Tedersoo, L. (2016). Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiology Reviews, 40(5), 686–700. https://doi.org/10.1093/femsre/fuw017

7. Bálint, M., Pfenninger, M., Grossart, H.-P., Taberlet, P., Vellend, M., Leibold, M. A., … Bowler, D. (2018). Environmental DNA Time Series in Ecology. Trends in Ecology & Evolution, 33(12), 945–957. https://doi.org/10.1016/j.tree.2018.09.003

8. Barnes, M. a, Turner, C. R., Jerde, C. L., Renshaw, M. a, Chadderton, W. L., & Lodge, D. M. (2014). Environmental Conditions Influence eDNA Persistence in Aquatic Systems. Environmental Science & Technology, 48, 1819–1827. https://doi.org/10.1021/es404734p

9. Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics, 17(1), 1–17. https://doi.org/10.1007/s10592-015-0775-4

10. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Usinglme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01

11. Bennett, K. D., & Willis, K. J. (2001). Pollen. In Tracking Environmental Change Using Lake Sediments (pp. 5–32). Kluwer Academic Publishers. https://doi.org/10.1007/0-306- 47668-1_2

12. Bessey, C., Jarman, S. N., Berry, O., Olsen, Y. S., Bunce, M., Simpson, T., … Keesing, J. (2020). Maximizing fish detection with eDNA metabarcoding. Environmental DNA, edn3.74. https://doi.org/10.1002/edn3.74

13. Bissett, A., Gibson, J. A. E., Jarman, S. N., Swadling, K. M., & Cromer, L. (2005). Isolation, amplification, and identification of ancient copepod DNA from lake sediments. Limnology and Oceanography: Methods, 3(12), 533–542. https://doi.org/10.4319/lom.2005.3.533

14. Bista, I., Carvalho, G. R., Tang, M., Walsh, K., Zhou, X., Hajibabaei, M., … Creer, S. (2018). Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Molecular Ecology Resources, 18(5), 1020–1034. https://doi.org/10.1111/1755-0998.12888

15. Bista, I., Carvalho, G. R., Walsh, K., Seymour, M., Hajibabaei, M., Lallias, D., Christmas, M., & Creer, S. (2017). Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nature Communications, 8(1). https://doi.org/10.1038/ncomms14087

16. Blackman, R. C., Benucci, M., Donnelly, R. C., Hänfling, B., Harper, L. R., Sellers, G. S., & Handley, L. L. (2020). Simple, sensitive and species-specific assays for detecting quagga and zebra mussels (Dreissena rostriformis bugensis and d. polymorpha) using environmental DNA. Management of Biological Invasions, 11(2), 218–236. https://doi.org/10.3391/mbi.2020.11.2.04

17. Boessenkool, S., Mcglynn, G., Epp, L. S., Taylor, D., Pimentel, M., Gizaw, A., … Popp, M. (2014). Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity. Conservation Biology, 28(2), 446–455. https://doi.org/10.1111/cobi.12195

18. Brede, N., Sandrock, C., Straile, D., Spaak, P., Jankowski, T., Streit, B., & Schwenk, K. (2009). The impact of human-made ecological changes on the genetic architecture of Daphnia species. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4758–4763. https://doi.org/10.1073/pnas.0807187106

19. Butchart, S. H. M., Walpole, M., Collen, B., von Strien, A., Scharlemann, J. P. W., Almond, R. E. A., … Carr, G. M. (2010). Global Biodiversity: Indicators of Recent Declines. Science, 328(5982), 1164–1168. https://doi.org/10.1126/science.1187512

20. Buxton, A. S., Groombridge, J. J., & Griffiths, R. A. (2018). Seasonal variation in environmental DNA detection in sediment and water samples. PLoS ONE, 13(1), e0191737. https://doi.org/10.1371/journal.pone.0191737

21. Buxton, A. S., Groombridge, J. J., Zakaria, N. B., & Griffiths, R. A. (2017). Seasonal variation in environmental DNA in relation to population size and environmental factors. Scientific Reports, 7, 46294. https://doi.org/10.1038/srep46294

22. Bylemans, J., Furlan, E. M., Gleeson, D. M., Hardy, C. M., & Duncan, R. P. (2018). Does Size Matter? An Experimental Evaluation of the Relative Abundance and Decay Rates of Aquatic Environmental DNA. Environmental Science and Technology, 52(11), 6408– 6416. research-article. https://doi.org/10.1021/acs.est.8b01071

23. Bylemans, J., Furlan, E. M., Hardy, C. M., McGuffie, P., Lintermans, M., & Gleeson, D. M. (2017). An environmental DNA-based method for monitoring spawning activity: a case study, using the endangered Macquarie perch (Macquaria australasica). Methods in Ecology and Evolution, 8, 646–655. https://doi.org/10.1111/2041-210X.12709

24. Bylemans, J., Gleeson, D. M., Lintermans, M., Hardy, C. M., Beitzel, M., Gilligan, D. M., & Furlan, E. M. (2018). Monitoring riverine fish communities through eDNA metabarcoding: determining optimal sampling strategies along an altitudinal and biodiversity gradient. Metabarcoding and Metagenomics, 2, 1–12. https://doi.org/10.3897/mbmg.2.30457

25. Caldwell, J., Payment, P., & Villemur, R. (2011). Mitochondrial DNA as Source Tracking Markers of Fecal Contamination. In Microbial Source Tracking: Methods, Applications, and Case Studies (pp. 229–250). https://doi.org/10.1007/978-1-4419-9386-1_10

26. Cantera, I., Cilleros, K., Valentini, A., Cerdan, A., Dejean, T., Iribar, A., Taberlet, P., Vigouroux, R., & Brosse, S. (2019). Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Scientific Reports, 9, 3085. https://doi.org/10.1038/s41598-019-39399-5

27. Carim, K. J., Caleb Dysthe, J., McLellan, H., Young, M. K., McKelvey, K. S., & Schwartz, M. K. (2019). Using environmental DNA sampling to monitor the invasion of nonnative Esox lucius (northern pike) in the Columbia River basin, USA. Environmental DNA, 1(3), 215–226. https://doi.org/10.1002/edn3.22

28. Carpenter, S. R., & Leavitt, P. R. (1991). Temporal Variation in a Paleolimnological Record Arising from a Trophic Cascade. Ecology, 72(1), 277–285. https://doi.org/10.2307/1938921

29. Carraro, L., Hartikainen, H., Jokela, J., Bertuzzo, E., & Rinaldo, A. (2018). Estimating species distribution and abundance in river networks using environmental DNA. Proceedings of the National Academy of Sciences, 115(46), 11724–11729. https://doi.org/10.1073/pnas.1813843115

30. Cilleros, K., Valentini, A., Allard, L., Dejean, T., Etienne, R., Grenouillet, G., Iribar, A., Taberlet, P., Vigouroux, R., & Brosse, S. (2018). Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes. Molecular Ecology Resources, 19(1), 27–46. https://doi.org/10.1111/1755-0998.12900

31. Collins, R. A., Wangensteen, O. S., O’Gorman, E. J., Mariani, S., Sims, D. W., & Genner, M. J. (2018). Persistence of environmental DNA in marine systems. Communications Biology, 1(1), 185. https://doi.org/10.1038/s42003-018-0192-6

32. Coolen, M. J. L., & Overmann, J. (1998). Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Applied and Environmental Microbiology, 64(11), 4513–4521. https://doi.org/10.1128/aem.64.11.4513-4521.1998

33. Corinaldesi, C., Barucca, M., Luna, G. M., & Dell’Anno, A. (2011). Preservation, origin and genetic imprint of extracellular DNA in permanently anoxic deep-sea sediments. Molecular Ecology, 20(3), 642–654. https://doi.org/10.1111/j.1365-294X.2010.04958.x

34. Deiner, K., & Altermatt, F. (2014). Transport Distance of Invertebrate Environmental DNA in a Natural River. PLoS ONE, 9(2), e88786. https://doi.org/10.1371/journal.pone.0088786

35. Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière-Roussel, A., Altermatt, F.,… Bernatchez, L. (2017). Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 26(21), 5872–5895. https://doi.org/10.1111/mec.14350

36. Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., & Miaud, C. (2011). Persistence of Environmental DNA in Freshwater Ecosystems. PLoS ONE, 6(8), e23398. https://doi.org/10.1371/journal.pone.0023398

37. Doi, H., Fukaya, K., Oka, S., Sato, K., Kondoh, M., & Miya, M. (2019). Evaluation of detection probabilities at the water-filtering and initial PCR steps in environmental DNA metabarcoding using a multispecies site occupancy model. Scientific Reports, 9, 3581. https://doi.org/10.1038/s41598-019-40233-1

38. Doi, H., Inui, R., Akamatsu, Y., Kanno, K., Yamanaka, H., Takahara, T., & Minamoto, T. (2017a). Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshwater Biology, 62(1), 30–39. https://doi.org/10.1111/fwb.12846

39. Doi, H., Katano, I., Sakata, Y., Souma, R., Kosuge, T., Nagano, M., … Tojo, K. (2017b). Detection of an endangered aquatic heteropteran using environmental DNA in a wetland ecosystem. Royal Society Open Science, 4, 170568. https://doi.org/10.1098/rsos.170568

40. Doi, H., Uchii, K., Takahara, T., Matsuhashi, S., Yamanaka, H., & Minamoto, T. (2015). Use of Droplet Digital PCR for Estimation of Fish Abundance and Biomass in Environmental DNA Surveys. PLOS ONE, 10(3), e0122763. https://doi.org/10.1371/journal.pone.0122763

41. Domaizon, I., Savichtcheva, O., Debroas, D., Arnaud, F., Villar, C., Pignol, C., … Perga, M. E. (2013). DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages. Biogeosciences, 10(6), 3817–3838. https://doi.org/10.5194/bg-10-3817-2013

42. Domaizon, I., Winegardner, A., Capo, E., Gauthier, J., & Gregory-Eaves, I. (2017). DNA- based methods in paleolimnology: new opportunities for investigating long-term dynamics of lacustrine biodiversity. Journal of Paleolimnology, 58, 1–21. https://doi.org/10.1007/s10933-017-9958-y

43. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., … Sullivan, C. A. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society, 81(2), 163–182. https://doi.org/10.1017/S1464793105006950

44. Dunker, K. J., Sepulveda, A. J., Massengill, R. L., Olsen, J. B., Russ, O. L., Wenburg, J. K., & Antonovich, A. (2016). Potential of Environmental DNA to Evaluate Northern Pike (Esox lucius) Eradication Efforts: An Experimental Test and Case Study. PLOS ONE, 11(9), e0162277. https://doi.org/10.1371/journal.pone.0162277

45. Edgar R.C. (2016). UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv. https://doi.org/10.1101/081257

46. Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460–2461. https://doi.org/10.1093/bioinformatics/btq461

47. Edgar, R. C., & Flyvbjerg, H. (2015). Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics, 31(21), 3476–3482. https://doi.org/10.1093/bioinformatics/btv401

48. Eichmiller, J. J., Best, E., Sorensen, P. W., Best, S. E., & Sorensen, P. W. (2016). Effects of Temperature and Trophic State on Degradation of Environmental DNA in Lake Water. Environmental Science and Technology, 50(4), 1859–1867. https://doi.org/10.1021/acs.est.5b05672

49. Ellegaard, M., Clokie, M. R. J., Czypionka, T., Frisch, D., Godhe, A., Kremp, A., … John Anderson, N. (2020). Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation. Communications Biology, 3, 169. https://doi.org/10.1038/s42003-020-0899-z

50. Ellison, S. L. R., English, C. A., Burns, M. J., & Keer, J. T. (2006). Routes to improving the reliability of low level DNA analysis using real-time PCR Stephen. BMC Biotechnology, 6(33). https://doi.org/10.1186/1472-6750-6-33

51. Erickson, R. A., Rees, C. B., Coulter, A. A., Merkes, C. M., McCalla, S. G., Touzinsky, K. F., … Amberg, J. J. (2016). Detecting the movement and spawning activity of bigheaded carps with environmental DNA. Molecular Ecology Resources, 16(4), 957– 965. https://doi.org/10.1111/1755-0998.12533

52. Evans, N. T., Li, Y., Renshaw, M. A., Olds, B. P., Deiner, K., Turner, C. R., Jerde, C. L., Lodge, D. M., Lamberti, G. A., & Pfrender, M. E. (2017). Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering. Canadian Journal of Fisheries and Aquatic Sciences, 74(9), 1362–1374. https://doi.org/10.1139/cjfas-2016-0306

53. Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples. Biology Letters, 4(4), 423–425. https://doi.org/10.1098/rsbl.2008.0118

54. Ficetola, G. F., Poulenard, J., Sabatier, P., Messager, E., Gielly, L., Leloup, A., Etienne, D., Bakke, J., Malet, E., Fanget, B., Støren, E., Reyss, J.-L., Taberlet, P., & Arnaud, F. (2018). DNA from lake sediments reveals long-term ecosystem changes after a biological invasion. Science Advances, 4(5), eaar4292. https://doi.org/10.1126/sciadv.aar4292

55. Ficetola, G. F., Taberlet, P., & Coissac, E. (2016). How to limit false positives in environmental DNA and metabarcoding? Molecular Ecology Resources, 16(3), 604–607. https://doi.org/10.1111/1755-0998.12508

56. Finney, B. P., Gregory-eaves, I., Douglas, M. S. V, & Smol, J. P. (2002). Fisheries productivity in the northeastern pacific ocean. Nature, 416, 729–733.

57. Frey, D. G. (1960). The Ecological Significance of Cladoceran Remains in Lake Sediments. Ecology, 41(4), 684–699. https://doi.org/10.2307/1931802

58. Fujiwara, A., Matsuhashi, S., Doi, H., Yamamoto, S., & Minamoto, T. (2016). Use of environmental DNA to survey the distribution of an invasive submerged plant in ponds. Freshwater Science, 35(2), 748–754. https://doi.org/10.1086/685882

59. Fukaya, K., Murakami, H., Yoon, S., Minami, K., Osada, Y., Yamamoto, S., … Kondoh, M. (2020). Estimating fish population abundance by integrating quantitative data on environmental DNA and hydrodynamic modelling. Molecular Ecology. https://doi.org/10.1111/mec.15530

60. Fukumoto, S., Ushimaru, A., & Minamoto, T. (2015). A basin-scale application of environmental DNA assessment for rare endemic species and closely related exotic species in rivers: A case study of giant salamanders in Japan. Journal of Applied Ecology, 52(2), 358–365. https://doi.org/10.1111/1365-2664.12392

61. Fukuoka A., Takahara T., Matsumoto M., Biology Club of Hyogo Prefectural Agricultural High School, Ushimaru A., Minamoto T. (2016). Establishment of detection system for native rare species, Hemigrammocypris rasborella, using environmental DNA. Japanese Journal of Ecology, 66, 613–620. [In Japanese]

62. Geerts, A. N., Boets, P., Van den Heede, S., Goethals, P., & Van der heyden, C. (2018). A search for standardized protocols to detect alien invasive crayfish based on environmental DNA (eDNA): A lab and field evaluation. Ecological Indicators, 84(August 2017), 564–572. https://doi.org/10.1016/j.ecolind.2017.08.068

63. Giguet-Covex, C., Pansu, J., Arnaud, F., Rey, P.-J., Griggo, C., Gielly, L., Domaizon, I., Coissac, E., David, F., Choler, P., Poulenard, J., & Taberlet, P. (2014). Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4211

64. Goldberg C.S., Sepulveda A., Ray A., Baumgardt J., Waits L.P. (2013). Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshwater Science, 32(3), 792–800. https://doi.org/10.1899/13-046.1

65. Goldberg, C. S., Strickler, K. M., & Fremier, A. K. (2018). Degradation and dispersion limit environmental DNA detection of rare amphibians in wetlands: Increasing efficacy of sampling designs. Science of the Total Environment, 633(15), 695–703. https://doi.org/10.1016/j.scitotenv.2018.02.295

66. Goldberg, C. S., Turner, C. R., Deiner, K., Klymus, K. E., Thomsen, P. F., Murphy, M. A., … Taberlet, P. (2016). Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution, 7(11), 1299– 1307. https://doi.org/10.1111/2041-210X.12595

67. Golenberg, E. M., Giannasi, D. E., Clegg, M. T., Smiley, C. J., Durbin, M., Henderson, D., & Zurawski, G. (1990). Chloroplast DNA sequence from a Miocene Magnolia species. Nature, 344(6267), 656–658. https://doi.org/10.1038/344656a0

68. Guillera-Arroita, G., Lahoz-Monfort, J. J., van Rooyen, A. R., Weeks, A. R., & Tingley, R. (2017). Dealing with false-positive and false-negative errors about species occurrence at multiple levels. Methods in Ecology and Evolution, 8(9), 1081–1091. https://doi.org/10.1111/2041-210X.12743

69. Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chemistry and Biology, 5(10). https://doi.org/10.1016/S1074- 5521(98)90108-9

70. Hänfling, B., Lawson Handley, L., Read, D. S., Hahn, C., Li, J., Nichols, P., Blackman, R. C., Oliver, A., & Winfield, I. J. (2016). Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Molecular Ecology, 25(13), 3101–3119. https://doi.org/10.1111/mec.13660

71. Hannon, G. E., & Geology, Q. (1997). The plant-macrofossil record of past lake-level changes. Journal of Paleolimnology, 18, 15–28. https://doi.org/10.1023/A:1007958511729

72. Harrison, J. B., Sunday, J. M., & Rogers, S. M. (2019). Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proceedings of the Royal Society B: Biological Sciences, 286(1915). https://doi.org/10.1098/rspb.2019.1409

73. Hartman, L. J., Coyne, S. R., & Norwood, D. A. (2005). Development of a novel internal positive control for Taqman® based assays. Molecular and Cellular Probes, 19(1), 51–59. https://doi.org/10.1016/j. mcp.2004.07.006

74. Hashizume, H., Sato, M., Sato, M. O., Ikeda, S., Yoonuan, T., Sanguankiat, S., … Minamoto, T. (2017). Application of environmental DNA analysis for the detection of Opisthorchis viverrini DNA in water samples. Acta Tropica, 169, 1–7. https://doi.org/10.1016/j.actatropica.2017.01.008

75. Hayami, K., Sakata, M. K., Inagawa, T., Okitsu, J., Katano, I., Doi, H., … Minamoto, T. (2020). Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs. Ecology and Evolution. 10(12), 5354–5367. https://doi.org/10.1002/ece3.6279

76. Hebert, P. D. N., & Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. Systematic Biology, 54(5), 852–859. https://doi.org/10.1080/10635150500354886

77. Holman, L. E., de Bruyn, M., Creer, S., Carvalho, G., Robidart, J., & Rius, M. (2019). Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. Scientific Reports, 9, 11559. https://doi.org/10.1038/s41598-019-47899-7

78. Honjo, M. N., Minamoto, T., & Kawabata, Z. (2012). Reservoirs of Cyprinid herpesvirus 3 (CyHV-3) DNA in sediments of natural lakes and ponds. Veterinary Microbiology, 155(2–4), 183–190. https://doi.org/10.1016/j.vetmic.2011.09.005

79. Honjo, M. N., Minamoto, T., Matsui, K., Uchii, K., Yamanaka, H., Suzuki, A. A., … Kawabata, Z. (2010). Quantification of cyprinid herpesvirus 3 in environmental water by using an external standard virus. Applied and Environmental Microbiology, 76(1), 161–168. https://doi.org/10.1128/AEM.02011-09

80. Hou, W., Dong, H., Li, G., Yang, J., Coolen, M. J. L., Liu, X., … Wan, Y. (2014). Identification of photosynthetic plankton communities using sedimentary ancient DNA and their response to late-holocene climate change on the Tibetan Plateau. Scientific Reports, 4, 6648. https://doi.org/10.1038/srep06648

81. Ikeda, K., Doi, H., Tanaka, K., Kawai, T., & Negishi, J. N. (2016). Using environmental DNA to detect an endangered crayfish Cambaroides japonicus in streams. Conservation Genetics Resources, 8(3), 231–234. https://doi.org/10.1007/s12686-016-0541-z

82. Imura H. (2008). The Formation and Collapse and their Factors in the Distribution Systems of Ayu Fry Caught in Lake Biwa, Shiga Prefecture. Proceedings of the Institute of Natural Sciences, Nihon University. 43, 7-16 [In Japanese]

83. Ishige, T., Miya, M., Ushio, M., Sado, T., Ushioda, M., Maebashi, K., … Matsubayashi, H. (2017). Tropical-forest mammals as detected by environmental DNA at natural saltlicks in Borneo. Biological Conservation, 210, 281–285. https://doi.org/10.1016/j.biocon.2017.04.023

84. Jacobsen, C. S., Nielsen, T. K., Vester, J. K., Stougaard, P., Nielsen, J. L., Voriskova, J., Winding, A., Baldrian, P., Liu, B., Frostegård, Å., Pedersen, D., Tveit, A. T., Svenning, M. M., Tebbe, C. C., Øvreås, L., Jakobsen, P. B., Blazewicz, S. J., Hubablek, V., Bertilsson, S., … Bælum, J. (2018). Inter-laboratory testing of the effect of DNA blocking reagent G2 on DNA extraction from low-biomass clay samples. Scientific Reports, 8, 5711. https://doi.org/10.1038/s41598-018-24082-y

85. Jane, S. F., Wilcox, T. M., Mckelvey, K. S., Young, M. K., Schwartz, M. K., Lowe, W. H., … Whiteley, A. R. (2015). Distance, flow and PCR inhibition: EDNA dynamics in two headwater streams. Molecular Ecology Resources, 15(1), 216–227. https://doi.org/10.1111/1755-0998.12285

86. Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters, 4(2), 150–157. https://doi.org/10.1111/j.1755-263X.2010.00158.x

87. Jerde, C. L., Olds, B. P., Shogren, A. J., Andruszkiewicz, E. A., Mahon, A. R., Bolster, D., & Tank, J. L. (2016). Influence of Stream Bottom Substrate on Retention and Transport of Vertebrate Environmental DNA. Environmental Science and Technology, 50(16), 8770–8779. https://doi.org/10.1021/acs.est.6b01761

88. Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2019a). Particle Size Distribution of Environmental DNA from the Nuclei of Marine Fish. Environmental Science and Technology, 53(16), 9947–9956. https://doi.org/10.1021/acs.est.9b02833

89. Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2020a). Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass. Environmental DNA, 2(2), 140–151. https://doi.org/10.1002/edn3.51

90. Jo, T., Murakami, H., Masuda, R., & Minamoto, T. (2020b). Selective collection of long fragments of environmental DNA using larger pore size filter. Science of the Total Environment, 735, 139462. https://doi.org/10.1016/j.scitotenv.2020.139462

91. Jo, T., Murakami, H., Masuda, R., Sakata, M. K., Yamamoto, S., & Minamoto, T. (2017). Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA. Molecular Ecology Resources, 17(6), e25–e33. https://doi.org/10.1111/1755-0998.12685

92. Jo, T., Murakami, H., Yamamoto, S., Masuda, R., & Minamoto, T. (2019b). Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecology and Evolution, 9(3), 1135–1146. https://doi.org/10.1002/ece3.4802

93. Kakuda, A., Doi, H., Souma, R., Nagano, M., Minamoto, T., & Katano, I. (2019). Environmental DNA detection and quantification of invasive red-eared sliders, Trachemy scripta elegans, in ponds and the influence of water quality. PeerJ, 7, e8155. https://doi.org/10.7717/peerj.8155

94. Kamoroff, C., & Goldberg, C. C. S. (2018). An issue of life or death: using eDNA to detect viable individuals in wilderness restoration. Freshwater Science, 37(3), 685–696. https://doi.org/10.1086/699203.

95. Kanbar, H. J., Olajos, F., Englund, G., & Holmboe, M. (2020). Geochemical identification of potential DNA-hotspots and DNA-infrared fingerprints in lake sediments. Applied Geochemistry, 122, 104728. https://doi.org/10.1016/j.apgeochem.2020.104728

96. Kasai, A., Takada, S., Yamazaki, A., Masuda, R., & Yamanaka, H. (2020). The effect of temperature on environmental DNA degradation of Japanese eel. Fisheries Science, 86(3), 465–471. https://doi.org/10.1007/s12562-020-01409-1

97. Kerfoot, W. C. (1975). The Divergence of Adjacent Populations. Ecology, 56(6), 1298–1313. https://doi.org/10.2307/1934698

98. Kessler, E. J., Ash, K. T., Barratt, S. N., Larson, E. R., & Davis, M. A. (2020). Radiotelemetry reveals effects of upstream biomass and UV exposure on environmental DNA occupancy and detection for a large freshwater turtle. Environmental DNA, 2(1), 13–23. https://doi.org/10.1002/edn3.42

99. Kimura, K., Saitou, K., & Moriue, Y. (2015). Third report of freshwater fish fauna in Chigasaki city, Kanagawa prefecture. Culture Museum Research Report, 24, 21–46.

100. Kirtane, A. A., Wilder, M. L., & Green, H. C. (2019). Development and validation of rapid environmental DNA (eDNA) detection methods for bog turtle (Glyptemys muhlenbergii). PLoS ONE, 14(11), e0222883. https://doi.org/10.1371/journal.pone.0222883

101. Klymus, K. E., Richter, C. A., Chapman, D. C., & Paukert, C. (2015). Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biological Conservation, 183, 77–84. https://doi.org/10.1016/j.biocon.2014.11.020

102. Kouduka, M., Suko, T., Morono, Y., Inagaki, F., Ito, K., & Suzuki, Y. (2012). A new DNA extraction method by controlled alkaline treatments from consolidated subsurface sediments. FEMS Microbiology Letters, 326(1), 47–54. https://doi.org/10.1111/j.1574- 6968.2011.02437.x

103. Kouduka, M., Tanabe, A. S., Yamamoto, S., Yanagawa, K., Nakamura, Y., Akiba, F., Tomaru, H., Toju, H., & Suzuki, Y. (2017). Eukaryotic diversity in late Pleistocene marine sediments around a shallow methane hydrate deposit in the Japan Sea. Geobiology, 15(5), 715–727. https://doi.org/10.1111/gbi.12233

104. Kuehne, L. M., Ostberg, C. O., Chase, D. M., Duda, J. J., & Olden, J. D. (2020). Use of environmental DNA to detect the invasive aquatic plants myriophyllum spicatum and Egeria Densa in Lakes. Freshwater Science, 39(3), 521–533. https://doi.org/10.1086/710106

105. Kumagai, M. (2008). Lake Biwa in the context of world lake problems. SIL Proceedings, 1922-2010, 30(1), 1–15. https://doi.org/10.1080/03680770.2008.11902076

106. Kuwae, M., Tamai, H., Doi, H., Sakata, M. K., Minamoto, T., & Suzuki, Y. (2020). Sedimentary DNA tracks decadal-centennial changes in fish abundance. Communications Biology, 3(1). https://doi.org/10.1038/s42003-020-01282-9

107. Lacoursière-Roussel, A., Rosabal, M., & Bernatchez, L. (2016). Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Molecular Ecology Resources, 16(6), 1401–1414. https://doi.org/10.1111/1755-0998.12522

108. Lamontagne, S., & Schindler, D. W. (1994). Historical Status of Fish Populations in Canadian Rocky Mountain Lakes Inferred from Subfossil Chaoborus (Diptera: Chaoboridae) Mandibles. Canadian Journal of Fisheries and Aquatic Sciences, 51(6), 1376–1383. https://doi.org/10.1139/f94-137

109. Laporte, M., Bougas, B., Côté, G., Champoux, O., Paradis, Y., Morin, J., & Bernatchez, L. (2020). Caged fish experiment and hydrodynamic bidimensional modeling highlight the importance to consider 2D dispersion in fluvial environmental DNA studies. Environmental DNA, 2(3), 362–372. https://doi.org/10.1002/edn3.88

110. Laramie, M. B., Pilliod, D. S., & Goldberg, C. S. (2015). Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biological Conservation, 183, 29–37. https://doi.org/10.1016/j.biocon.2014.11.025

111. Leavitt, P. R., & Carpenter, S. R. (1989). Whole-lake experiments: The annual record of fossil pigments and zooplankton. Limnology and Oceanography, 34(4), 700–717.

112. Leavitt, P. R., & Carpenter, S. R. (1990). Aphotic pigment degradation in the hypolimnion: Implications for sedimentation studies and paleolimnology. Limnology and Oceanography, 35(2), 520–534. https://doi.org/10.4319/lo.1990.35.2.0520

113. Leblanc, F., Belliveau, V., Watson, E., Coomber, C., Simard, N., Di Bacco, C., … Gagné, N. (2020). Environmental DNA (eDNA) detection of marine aquatic invasive species (AIS) in Eastern Canada using a targeted species-specific qPCR approach. Management of Biological Invasions, 11(2), 201–217. https://doi.org/10.3391/mbi.2020.11.2.03

114. Levy-Booth, D. J., Campbell, R. G., Gulden, R. H., Hart, M. M., Powell, J. R., Klironomos, J. N., … Dunfield, K. E. (2007). Cycling of extracellular DNA in the soil environment. Soil Biology and Biochemistry, 39(12), 2977–2991. https://doi.org/10.1016/j.soilbio.2007.06.020

115. Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature, 362(6422), 709–715. https://doi.org/10.1038/362709a0

116. Liu, X., Dur, G., Ban, S., Sakai, Y., Ohmae, S., & Morita, T. (2020). Planktivorous fish predation masks anthropogenic disturbances on decadal trends in zooplankton biomass and body size structure in Lake Biwa, Japan. Limnology and Oceanography, 65(3), 667– 682. https://doi.org/10.1002/lno.11336

117. Lorenzen, C. J. (1967). Determination of Chlorophyll and Pheo-Pigments: Spectrophotometric Equations. Limnology and Oceanography, 12(2), 343–346. https://doi.org/10.4319/lo.1967.12.2.0343

118. Ma, E., Mächler, E., Osathanunkul, M., & Altermatt, F. (2018). Shedding light on eDNA: neither natural levels of UV radiation nor the presence of a filter feeder affect eDNA- based detection of aquatic organisms. Plos One, 13(4), e0195529. https://doi.org/10.1371/journal.pone.0195529

119. Mächler, E., Deiner, K., Spahn, F., & Altermatt, F. (2016). Fishing in the Water: Effect of Sampled Water Volume on Environmental DNA-Based Detection of Macroinvertebrates. Environmental Science and Technology, 50(1), 305–312. https://doi.org/10.1021/acs.est.5b04188

120. Mächler, E., Little, C. J., Wüthrich, R., Alther, R., Fronhofer, E. A., Gounand, I., … Altermatt, F. (2019). Assessing different components of diversity across a river network using eDNA. Environmental DNA, 1(3), 290–301. https://doi.org/10.1002/edn3.33

121. Maggi, F. (2013). The settling velocity of mineral, biomineral, and biological particles and aggregates in water. Journal of Geophysical Research: Oceans, 118(4), 2118–2132. https://doi.org/10.1002/jgrc.20086

122. Majaneva, M., Diserud, O. H., Eagle, S. H. C., Boström, E., Hajibabaei, M., & Ekrem, T. (2018). Environmental DNA filtration techniques affect recovered biodiversity. Scientific Reports, 8, 4682. https://doi.org/10.1038/s41598-018-23052-8

123. Matsuhashi, S., Doi, H., Fujiwara, A., Watanabe, S., & Minamoto, T. (2016). Evaluation of the Environmental DNA Method for Estimating Distribution and Biomass of Submerged Aquatic Plants. PLOS ONE, 11(6), e0156217. https://doi.org/10.1371/journal.pone.0156217

124. Mauvisseau, Q., Coignet, A., Delaunay, C., Souty-grosset, D. B. C., Pinet, F., Bouchon, D., & Souty-Grosset, C. (2018). Environmental DNA as an efficient tool for detecting invasive crayfishes in freshwater ponds. Hydrobiologia, 805(1), 163–175. https://doi.org/10.1007/s10750-017-3288-y

125. Meyers, P. A. (2003). Application of organic geochemistry to paleolimnological reconstruction: a summary of examples from the Laurention Great Lakes. Organic Geochemistry, 34(2), 261–289. https://doi.org/10/cwttjz

126. Minamoto, T., Fukuda, M., Katsuhara, K. R., Fujiwara, A., Hidaka, S., Yamamoto, S., … Masuda, R. (2017a). Environmental DNA reflects spatial and temporal jellyfish distribution. PLoS ONE, 12(2), e0173073. https://doi.org/10.1371/journal.pone.0173073

127. Minamoto, T., Hayami, K., Sakata, M. K., & Imamura, A. (2019). Real-time polymerase chain reaction assays for environmental DNA detection of three salmonid fish in Hokkaido, Japan: Application to winter surveys. Ecological Research, 34(1), 237–242. https://doi.org/10.1111/1440-1703.1018

128. Minamoto, T., Uchii, K., Takahara, T., Kitayoshi, T., Tsuji, S., Yamanaka, H., & Doi, H. (2017b). Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio. Molecular Ecology Resources, 17(2), 324–333. https://doi.org/10.1111/1755-0998.12586

129. Minamoto, T., Yamanaka, H., Takahara, T., Honjo, M. N., & Kawabata, Z. (2011). Surveillance of fish species composition using environmental DNA. Limnology, 13(2), 193–197. https://doi.org/10.1007/s10201-011-0362-4

130. Minamoto, T., Yamanaka, H., Takahara, T., Honjo, M. N., & Kawabata, Z. (2012). Surveillance of fish species composition using environmental DNA. Limnology, 13(2), 193–197. https://doi.org/10.1007/s10201-011-0362-4

131. Miya, M., Minamoto, T., Yamanaka, H., Oka, S., Sato, K., Yamamoto, S., Sado, T., & Doi, H. (2016). Use of a Filter Cartridge for Filtration of Water Samples and Extraction of Environmental DNA. Journal of Visualized Experiments, 117. https://doi.org/10.3791/54741

132. Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., … Iwasaki, W. (2015). MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science, 2, 150088. https://doi.org/10.1098/rsos.150088

133. Murakami, H., Yoon, S., Kasai, A., Minamoto, T., Yamamoto, S., Sakata, M. K., … Masuda, R. (2019). Dispersion and degradation of environmental DNA from caged fish in a marine environment. Fisheries Science, 85(2), 327–337. https://doi.org/10.1007/s12562- 018-1282-6

134. Nagoshi, M. (1966). Ecological studies on the population of isaza, Chaenogobius Isaza Tanaka, in Lake Biwa, with special reference to the effects of population density upon its growth. Researches on Population Ecology, 8(1), 20–36. https://doi.org/10.1007/BF02524743

135. Nakagawa, H., Yamamoto, S., Sato, Y., Sado, T., Minamoto, T., & Miya, M. (2018). Comparing local- and regional-scale estimations of the diversity of stream fish using eDNA metabarcoding and conventional observation methods. Freshwater Biology, 63(6), 569–580. https://doi.org/10.1111/fwb.13094

136. Nakano, T., Tayasu, I., Wada, E., Igeta, A., Hyodo, F., & Miura, Y. (2005). Sulfur and strontium isotope geochemistry of tributary rivers of Lake Biwa: implications for human impact on the decadal change of lake water quality. Science of The Total Environment, 345(1–3), 1–12. https://doi.org/10.1016/j.scitotenv.2004.10.014

137. Nelson-Chorney, H. T., Davis, C. S., Poesch, M. S., Vinebrooke, R. D., Carli, C. M., & Taylor, M. K. (2019). Environmental DNA in lake sediment reveals biogeography of native genetic diversity. Frontiers in Ecology and the Environment, 17(6), 313–318. https://doi.org/10.1002/fee.2073

138. Nielsen, K. M., Johnsen, P. J., Bensasson, D., & Daffonchio, D. (2007). Release and persistence of extracellular DNA in the environment. Environmental Biosafety Research, 6(1–2), 37–53. https://doi.org/10.1051/ebr:2007031

139. Nukazawa, K., Hamasuna, Y., & Suzuki, Y. (2018). Simulating the Advection and Degradation of the Environmental DNA of Common Carp along a River. Environmental Science and Technology, 52(18), 10562–10570. https://doi.org/10.1021/acs.est.8b02293

140. Ogawa, N. O., Koitabashi, T., Oda, H., Nakamura, T., Ohkouchi, N., & Wada, E. (2001). Fluctuations of nitrogen isotope ratio of gobiid fish (Isaza) specimens and sediments in Lake Biwa, Japan, during the 20th century. Limnology and Oceanography, 46(5), 1228– 1236. https://doi.org/10.4319/lo.2001.46.5.1228

141. Ogram, A. V., Mathot, M. L., Harsh, J. B., Boyle, J., & Pettigrew, C. A., Jr. (1994). Effects of DNA Polymer Length on Its Adsorption to Soils. Applied and Environmental Microbiology, 60(2), 393–396. https://doi.org/10.1128/aem.60.2.393-396.1994

142. Ogram, A., Sayler, G. S., & Barkay, T. (1987). The extraction and purification of microbial DNA from sediments. Journal of Microbiological Methods, 7(2–3), 57–66. https://doi.org/10.1016/0167-7012(87)90025-X

143. Oka, S., Doi, H., Miyamoto, K., Hanahara, N., Sado, T., & Miya, M. (2020). Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: Estimation of species richness and detection of habitat segregation. Environmental DNA. https://doi.org/10.1002/edn3.132

144. Olajos, F., Bokma, F., Bartels, P., Myrstener, E., Rydberg, J., Öhlund, G., … Englund, G. (2018). Estimating species colonization dates using DNA in lake sediment. Methods in Ecology and Evolution, 9(3), 535–543. https://doi.org/10.1111/2041-210X.12890

145. Orsini, L., Schwenk, K., De Meester, L., Colbourne, J. K., Pfrender, M. E., & Weider, L. J. (2013). The evolutionary time machine: Using dormant propagules to forecast how populations can adapt to changing environments. Trends in Ecology and Evolution, 28(5), 274–282. https://doi.org/10.1016/j.tree.2013.01.009

146. Pansu, J., Giguet-Covex, C., Ficetola, G. F., Gielly, L., Boyer, F., Zinger, L., Arnaud, F., Poulenard, J., Taberlet, P., & Choler, P. (2015). Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Molecular Ecology, 24(7), 1485–1498. https://doi.org/10.1111/mec.13136

147. Parducci, L., Bennett, K. D., Ficetola, G. F., Alsos, I. G., Suyama, Y., Wood, J. R., & Pedersen, M. W. (2017). Ancient plant DNA in lake sediments. New Phytologist, 214(3), 924–942. https://doi.org/10.1111/nph.14470

148. Parducci, L., Suyama, Y., Lascoux, M., & Bennett, K. D. (2005). Ancient DNA from pollen: a genetic record of population history in Scots pine. Molecular Ecology, 14(9), 2873–2882. https://doi.org/10.1111/j.1365-294x.2005.02644.x

149. Pietramellara, G., Ascher, J., Borgogni, F., Ceccherini, M. T., Guerri, G., & Nannipieri, P. (2009). Extracellular DNA in soil and sediment: fate and ecological relevance. Biology and Fertility of Soils, 45(3), 219–235. https://doi.org/10.1007/s00374-008-0345-8

150. Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2013). Factors influencing detection of eDNA from a stream-dwelling amphibian. Molecular Ecology Resources, 14(1), 109–116. https://doi.org/10.1111/1755-0998.12159

151. Pont, D., Rocle, M., Valentini, A., Civade, R., Jean, P., Maire, A., Roset, N., Schabuss, M., Zornig, H., & Dejean, T. (2018). Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Scientific Reports, 8, 10361. https://doi.org/10.1038/s41598-018-28424-8

152. Port, J. A., O’Donnell, J. L., Romero-Maraccini, O. C., Leary, P. R., Litvin, S. Y., Nickols, K. J., Yamahara, K. M., & Kelly, R. P. (2015). Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Molecular Ecology, 25(2), 527–541. https://doi.org/10.1111/mec.13481

153. Prentice, S. V, Roe, H. M., Bennion, H., Sayer, C. D., & Salgado, J. (2018). Refining the palaeoecology of lacustrine testate amoebae: insights from a plant macrofossil record from a eutrophic Scottish lake. Journal of Paleolimnology, 60(2), 189–207. https://doi.org/10.1007/s10933-017-9966-y

154. Qu, C., & Stewart, K. A. (2019). Evaluating monitoring options for conservation: comparing traditional and environmental DNA tools for a critically endangered mammal. The Science of Nature, 106(3–4). https://doi.org/10.1007/s00114-019-1605-1

155. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https:// www. R- project. org/.

156. Robison, B. H., & Bailey, T. G. (1981). Sinking rates and dissolution of midwater fish fecal matter. Marine Biology, 65(2), 135–142. https://doi.org/10.1007/bf00397077

157. Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., … Goodman, R. M. (2000). Cloning the soil metagenome: A strategy for accessing the genetic and functional diversity of uncultured microorganisms. Applied and Environmental Microbiology, 66(6), 2541–2547. https://doi.org/10.1128/AEM.66.6.2541-2547.2000

158. Rose, J. P., Wademan, C., Weir, S., Wood, J. S., & Todd, B. D. (2019). Traditional trapping methods outperform eDNA sampling for introduced semi-aquatic snakes. Plos One, 14(7), e0219244. https://doi.org/10.1371/journal.pone.0219244

159. Sakata, M. K., Maki, N., Sugiyama, H., & Minamoto, T. (2017). Identifying a breeding habitat of a critically endangered fish, Acheilognathus typus, in a natural river in Japan. The Science of Nature, 104(11–12). https://doi.org/10.1007/s00114-017-1521-1

160. Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., … Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770–1774. https://doi.org/10.1126/science.287.5459.1770

161. Salter, I., Joensen, M., Kristiansen, R., Steingrund, P., & Vestergaard, P. (2019). Environmental DNA concentrations are correlated with regional biomass of Atlantic cod in oceanic waters. Communications Biology, 2(1). https://doi.org/10.1038/s42003-019- 0696-8

162. Sansom, B. J., & Sassoubre, L. M. (2017). Environmental DNA (eDNA) Shedding and Decay Rates to Model Freshwater Mussel eDNA Transport in a River. Environmental Science and Technology, 51(24), 14244–14253. https://doi.org/10.1021/acs.est.7b05199

163. Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A., & Boehm, A. B. (2016). Quantification of Environmental DNA (eDNA) Shedding and Decay Rates for Three Marine Fish. Environmental Science and Technology, 50(19), 10456–10464. https://doi.org/10.1021/acs.est.6b03114

164. Sato, H., Sogo, Y., Doi, H., & Yamanaka, H. (2017). Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities. Scientific Reports, 7, 14860. https://doi.org/10.1038/s41598-017-14978-6

165. Schultz, M. T., & Lance, R. F. (2015). Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA). PLOS ONE, 10(10), e0141503. https://doi.org/10.1371/journal.pone.0141503

166. Seddon, A. W. R., Mackay, A. W., Baker, A. G., Birks, H. J. B., Breman, E., Buck, C. E., … Simpson, G. (2014). Looking forward through the past: identification of 50 priority research questions in palaeoecology. Journal of Ecology, 102, 256–267. https://doi.org/10.1111/1365-2745.12195

167. Sengupta, M. E., Hellström, M., Kariuki, H. C., Olsen, A., Thomsen, P. F., Mejer, H., … Vennervald, B. J. (2019). Environmental DNA for improved detection and environmental surveillance of schistosomiasis. Proceedings of the National Academy of Sciences, 116(18), 8931–8940. https://doi.org/10.1073/pnas.1815046116

168. Seymour, M., Durance, I., Cosby, B. J., Ransom-Jones, E., Deiner, K., Ormerod, S. J., … Creer, S. (2018). Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Communications Biology, 1(1). https://doi.org/10.1038/s42003-017- 0005-3

169. Shaw, J. L. A., Clarke, L. J., Wedderburn, S. D., Barnes, T. C., Weyrich, L. S., & Cooper, A. (2016). Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biological Conservation, 197, 131-138. https://doi.org/10.1016/j.biocon.2016.03.010

170. Shiga Prefecture (2018) Production value of Lake Biwa fishery by type of fish. [In Japanese] https://www.pref.shiga.lg.jp/file/attachment/1012070.pdf

171. Shogren, A. J., Tank, J. L., Andruszkiewicz, E., Olds, B., Mahon, A. R., Jerde, C. L., & Bolster, D. (2017). Controls on eDNA movement in streams: Transport, Retention, and Resuspension. Scientific Reports, 7, 5065. https://doi.org/10.1038/s41598-017-05223-1

172. Siegenthaler, A., Wangensteen, O. S., Soto, A. Z., Benvenuto, C., Corrigan, L., & Mariani, S. (2019). Metabarcoding of shrimp stomach content: Harnessing a natural sampler for fish biodiversity monitoring. Molecular Ecology Resources, 19(1), 206–220. https://doi.org/10.1111/1755-0998.12956

173. Sigsgaard, E. E., Carl, H., Møller, P. R., & Thomsen, P. F. (2015). Monitoring the near- extinct European weather loach in Denmark based on environmental DNA from water samples. Biological Conservation, 183, 46–52. https://doi.org/10.1016/j.biocon.2014.11.023

174. Sigsgaard, E. E., Torquato, F., Frøslev, T. G., Moore, A. B. M., Sørensen, J. M., Range, P., … Thomsen, P. F. (2020). Using vertebrate environmental DNA from seawater in biomonitoring of marine habitats. Conservation Biology, 34(3), 697–710. https://doi.org/10.1111/cobi.13437

175. Smol, J. P., & Douglas, M. S. V. (2007). From controversy to consensus: Making the case for recent climate change in the Arctic using lake sediments. Frontiers in Ecology and the Environment, 5(9), 466–474. https://doi.org/10.1890/060162

176. Spear, S. F., Groves, J. D., Williams, L. a, & Waits, L. P. (2014). Using environmental DNA methods to improve detectability in a hellbender monitoring program. Biological Conservation, 183, 38–45. https://doi.org/10.1016/j.biocon.2014.11.016

177. Stager, J. C., Sporn, L. A., Johnson, M., & Regalado, S. (2015). Of paleo-genes and perch: What if an “alien” is actually a native? PLoS ONE, 10(3), e0119071. https://doi.org/10.1371/journal.pone.0119071

178. Stewart, K. A. (2019). Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodiversity and Conservation, 28(5), 983–1001. https://doi.org/10.1007/s10531-019-01709-8

179. Stoeckle, M. Y., Soboleva, L., & Charlop-Powers, Z. (2017). Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS ONE, 12(4), e0175186. https://doi.org/10.1371/journal.pone.0175186

180. Strayer, D. L., & Dudgeon, D. (2010). Freshwater biodiversity conservation: Recent progress and future challenges. Journal of the North American Benthological Society, 21(1), 344–358. https://doi.org/10.1899/08-171.1

181. Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation, 183, 85–92. https://doi.org/10.1016/j.biocon.2014.11.038

182. Suzuki, N., & Kitahara, T. (1996). Relation of Recruitment to the Number of Caught Juveniles in the Ayu Population of Lake Biwa. Fisheries Science, 62(1), 15–20. https://doi.org/10.2331/fishsci.62.15

183. Taberlet, P., Bonin, A., Coissac, E., & Zinger, L. (2018). Environmental DNA: For biodiversity research and monitoring. Oxford University Press.

184. Taberlet, P., Coissac, E., Hajibabaei, M., & Rieseberg, L. H. L. H. (2012). Environmental DNA. Molecular Ecology, 21, 1789–1793. https://doi.org/10.1111/j.1365- 294X.2012.05542.x

185. Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., & Willerslev, E. (2012). Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21(8), 2045–2050. https://doi.org/10.1111/j.1365-294x.2012.05470.x

186. Takahara, T., Minamoto, T., & Doi, H. (2013). Using Environmental DNA to Estimate the Distribution of an Invasive Fish Species in Ponds. PLoS ONE, 8(2), e56584. https://doi.org/10.1371/journal.pone.0056584

187. Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z. (2012). Estimation of fish biomass using environmental DNA. PLoS ONE, 7(4), e35868. https://doi.org/10.1371/journal.pone.0035868

188. Takeshita, D., Terui, S., Ikeda, K., Mitsuzuka, T., Osathanunkul, M., & Minamoto, T. (2020). Projection range of eDNA analysis in marshes: a suggestion from the Siberian salamander (Salamandrella keyserlingii) inhabiting the Kushiro marsh, Japan. PeerJ, 8, e9764. https://doi.org/10.7717/peerj.9764

189. Takeuchi, A., Iijima, T., Kakuzen, W., Watanabe, S., Yamada, Y., Okamura, A., … Tsukamoto, K. (2019). Release of eDNA by different life history stages and during spawning activities of laboratory-reared Japanese eels for interpretation of oceanic survey data. Scientific Reports, 9, 6074. https://doi.org/10.1038/s41598-019-42641-9

190. The eDNA Society. (2019). Environmental DNA Sampling and Experiment Manual. Version 2.1. Retrieved from http://ednasociety.org/eDNA_manual_Eng_v2_1_3b.pdf

191. Thomsen P.F., Kielgast J., Iversen L.L., Møller P.R., Rasmussen M., Willerslev E. (2012b). Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE, 7(8), e41732. https://doi.org/10.1371/journal.pone.0041732

192. Thomsen, P. F., Kielgast, J., Iversen, L. L., Wiuf, C., Rasmussen, M., Gilbert, M. T. P., … Willerslev, E. (2012a). Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 21(11), 2565–2573. https://doi.org/10.1111/j.1365-294X.2011.05418.x

193. Togaki, D., Doi, H., & Katano, I. (2020). Detection of freshwater mussels (Sinanodonta spp.) in artificial ponds through environmental DNA: a comparison with traditional hand collection methods. Limnology, 21(1), 59–65. https://doi.org/10.1007/s10201-019-00584-0

194. Tréguier, A., Paillisson, J. M., Dejean, T., Valentini, A., Schlaepfer, M. A., & Roussel, J. M. (2014). Environmental DNA surveillance for invertebrate species: Advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds. Journal of Applied Ecology, 51(4), 871–879. https://doi.org/10.1111/1365-2664.12262

195. Tsugeki, N. K., Honjo, M. N., & Kuwae, M. (2020). Interspecific variation in ephippial size between Daphnia galeata and D. pulicaria in Lake Biwa, Japan. Limnology. https://doi.org/10.1007/s10201-020-00646-8

196. Tsugeki, N. K., Kuwae, M., Tani, Y., Guo, X., Omori, K., & Takeoka, H. (2017). Temporal variations in phytoplankton biomass over the past 150 years in the western Seto Inland Sea, Japan. Journal of Oceanography, 73(3), 309–320. https://doi.org/10.1007/s10872-016-0404-y

197. Tsugeki, N., Oda, H., & Urabe, J. (2003). Fluctuation of the zooplankton community in Lake Biwa during the 20th century: a paleolimnological analysis. Limnology, 4(2), 101–107. https://doi.org/10.1007/s10201-003-0097-y

198. Tsuji, S., Miya, M., Ushio, M., Sato, H., Minamoto, T., & Yamanaka, H. (2020a). Evaluating intraspecific genetic diversity using environmental DNA and denoising approach: A case study using tank water. Environmental DNA, 2(1), 42–52. https://doi.org/10.1002/edn3.44

199. Tsuji, S., Shibata, N., Sawada, H., & Ushio, M. (2020b). Quantitative evaluation of intraspecific genetic diversity in a natural fish population using environmental DNA analysis. Molecular Ecology Resources, 20(5), 1323–1332. https://doi.org/10.1111/1755- 0998.13200

200. Tsuji, S., Ushio, M., Sakurai, S., Minamoto, T., & Yamanaka, H. (2017). Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance. Plos One, 12(4), e0176608. https://doi.org/10.1371/journal.pone.0176608

201. Tsuji, S., Yamanaka, H., & Minamoto, T. (2016). Effects of water pH and proteinase K treatment on the yield of environmental DNA from water samples. Limnology, 18(1), 1–7. https://doi.org/10.1007/s10201-016-0483-x

202. Turner, C. R., Barnes, M. A., Xu, C. C. Y., Jones, S. E., Jerde, C. L., & Lodge, D. M. (2014). Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods in Ecology and Evolution, 5(7), 676–684. https://doi.org/10.1111/2041- 210X.12206

203. Turner, C. R., Uy, K. L., & Everhart, R. C. (2015). Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biological Conservation, 183, 93–102. https://doi.org/10.1016/j.biocon.2014.11.017

204. Uchida, N., Kubota, K., Aita, S., & Kazama, S. (2020). Aquatic insect community structure revealed by eDNA metabarcoding derives indices for environmental assessment. PeerJ, 8, e9176. https://doi.org/10.7717/peerj.9176

205. Uchii, K., Doi, H., & Minamoto, T. (2016). A novel environmental DNA approach to quantify the cryptic invasion of non-native genotypes. Molecular Ecology Resources, 16(2), 415–422. https://doi.org/10.1111/1755-0998.12460

206. Ushio, M., Fukuda, H., Inoue, T., Makoto, K., Kishida, O., Sato, K., … Miya, M. (2017). Environmental DNA enables detection of terrestrial mammals from forest pond water. Molecular Ecology Resources, 17(6), e63–e75. https://doi.org/10.1111/1755-0998.12690

207. Ushio, M., Murata, K., Sado, T., Nishiumi, I., Takeshita, M., Iwasaki, W., & Miya, M. (2018). Demonstration of the potential of environmental DNA as a tool for the detection of avian species. Scientific Reports, 8, 4493. https://doi.org/10.1038/s41598-018-22817-5

208. VValentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P. F., Bellemain, E., Besnard, A., Coissac, E., Boyer, F., Gaboriaud, C., Jean, P., Poulet, N., Roset, N.,Copp, G. H., Geniez, P., Pont, D., Argillier, C., Baudoin, J.-M., … Dejean, T. (2016). Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Molecular Ecology, 25(4), 929–942. https://doi.org/10.1111/mec.13428

209. Wei, N., Nakajima, F., & Tobino, T. (2018). A microcosm study of surface sediment environmental DNA: decay observation, abundance estimation, and fragment length comparison. Environmental Science & Technology, 52(21), 12428–12435. https://doi.org/10.1021/acs.est.8b04956

210. Wilcox, T. M., McKelvey, K. S., Young, M. K., Sepulveda, A. J., Shepard, B. B., Jane, S. F., … Schwartz, M. K. (2016). Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis. Biological Conservation, 194, 209–216. https://doi.org/10.1016/j.biocon.2015.12.023

211. Willerslev, E., Cappellini, E., Boomsma, W., Nielsen, R., Hebsgaard, M. B., Brand, T. B., … Collins, M. J. (2007). Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science, 317(5834), 111–114. https://doi.org/10.1126/science.1141758

212. Willerslev, E., Hansen, A. J., Binladen, J., Brand, T. B., Gilbert, M. T. P., Shapiro, B., … Cooper, A. (2003). Diverse plant and animal genetic records from holocene and pleistocene sediments. Science, 300(5620), 791–795. https://doi.org/10.1126/science.1084114

213. Wood, Z. T., Erdman, B. F., York, G., Trial, J. G., & Kinnison, M. T. (2020). Experimental assessment of optimal lotic eDNA sampling and assay multiplexing for a critically endangered fish. Environmental DNA, 2(4), 407–417. https://doi.org/10.1002/edn3.64

214. Wooller, M. J., Gaglioti, B., Fulton, T. L., Lopez, A., & Shapiro, B. (2015). Post-glacial dispersal patterns of Northern pike inferred from an 8800 year old pike (Esox cf. lucius) skull from interior Alaska. Quaternary Science Reviews, 120, 118–125. https://doi.org/10.1016/j.quascirev.2015.04.027

215. Wotton, R. S., & Malmqvist, B. (2001). Feces in Aquatic Ecosystems. BioScience, 51(7), 537. https://doi.org/10.1641/0006-3568(2001)051[0537:fiae]2.0.co;2

216. Wu, Q., Kawano, K., Ishikawa, T., Sakata, M. K., Nakao, R., Hiraiwa, M. K., … Minamoto, T. (2019). Habitat selection and migration of the common shrimp, Palaemon paucidens in Lake Biwa, Japan—An eDNA-based study. Environmental DNA, 1(1), 54–63. https://doi.org/10.1002/edn3.6

217. WWF. (2018). Living Planet Report - 2018: Aiming higher. Environmental Conservation (Vol. 26). https://doi.org/10.1080/09528820802312343

218. WWF. (2020). Living Planet Report 2020 - Bending the curve of biodiversity loss.

219. Yamamoto, S., Masuda, R., Sato, Y., Sado, T., Araki, H., Kondoh, M., … Miya, M. (2017). Environmental DNA metabarcoding reveals local fish communities in a species- rich coastal sea. Scientific Reports, 7, 40368. https://doi.org/10.1038/srep40368

220. Yamamoto, S., Minami, K., Fukaya, K., Takahashi, K., Sawada, H., Murakami, H., … Kondoh, M. (2016). Environmental DNA as a “snapshot” of fish distribution: A case study of Japanese jack mackerel in Maizuru Bay, Sea of Japan. PLoS ONE, 11(3), e0149786. https://doi.org/10.1371/journal.pone.0149786

221. Yamanaka, H., & Minamoto, T. (2016). The use of environmental DNA of fishes as an efficient method of determining habitat connectivity. Ecological Indicators, 62, 147–153. https://doi.org/10.1016/j.ecolind.2015.11.022

222. Yamanaka, H., Minamoto, T., Matsuura, J., Sakurai, S., Tsuji, S., Motozawa, H., … Kondo, A. (2017). A simple method for preserving environmental DNA in water samples at ambient temperature by addition of cationic surfactant. Limnology, 18(2), 233–241. https://doi.org/10.1007/s10201-016-0508-5

223. Yamanaka, H., Motozawa, H., Tsuji, S., Miyazawa, R. C., Takahara, T., & Minamoto, T. (2016). On-site filtration of water samples for environmental DNA analysis to avoid DNA degradation during transportation. Ecological Research, 31(6), 963–967. https://doi.org/10.1007/s11284-016-1400-9

224. Zhang, E., Liu, E., Jones, R., Langdon, P., Yang, X., & Shen, J. (2010). A 150-year record of recent changes in human activity and eutrophication of Lake Wushan from the middle reach of the Yangze River, China. Journal of Limnology, 69(2), 235–241. https://doi.org/10.3274/JL10-69-2-06

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る