リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Molecular basis for gating of cardiac ryanodine receptor explains the mechanisms for gain- and loss-of function mutations」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Molecular basis for gating of cardiac ryanodine receptor explains the mechanisms for gain- and loss-of function mutations

Kobayashi, Takuya Tsutsumi, Akihisa Kurebayashi, Nagomi Saito, Kei Kodama, Masami Sakurai, Takashi Kikkawa, Masahide Murayama, Takashi Ogawa, Haruo 京都大学 DOI:10.1038/s41467-022-30429-x

2022

概要

Cardiac ryanodine receptor (RyR2) is a large Ca²⁺ release channel in the sarcoplasmic reticulum and indispensable for excitation-contraction coupling in the heart. RyR2 is activated by Ca²⁺ and RyR2 mutations are implicated in severe arrhythmogenic diseases. Yet, the structural basis underlying channel opening and how mutations affect the channel remains unknown. Here, we address the gating mechanism of RyR2 by combining high-resolution structures determined by cryo-electron microscopy with quantitative functional analysis of channels carrying various mutations in specific residues. We demonstrated two fundamental mechanisms for channel gating: interactions close to the channel pore stabilize the channel to prevent hyperactivity and a series of interactions in the surrounding regions is necessary for channel opening upon Ca²⁺ binding. Mutations at the residues involved in the former and the latter mechanisms cause gain-of-function and loss-of-function, respectively. Our results reveal gating mechanisms of the RyR2 channel and alterations by pathogenic mutations at the atomic level.

この論文で使われている画像

参考文献

1.

Bers, D. M. Macromolecular complexes regulating cardiac ryanodine receptor

function. J. Mol. Cell Cardiol. 37, 417–429 (2004).

NATURE COMMUNICATIONS | (2022)13:2821 | https://doi.org/10.1038/s41467-022-30429-x | www.nature.com/naturecommunications

13

ARTICLE

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

14

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30429-x

Santulli, G., Lewis, D., des Georges, A., Marks, A. R. & Frank, J. Ryanodine

receptor structure and function in health and disease. Subcell. Biochem. 87,

329–352 (2018).

Endo, M. Calcium-induced calcium release in skeletal muscle. Physiol. Rev. 89,

1153–1176 (2009).

Fabiato, A. & Fabiato, F. Calcium-induced release of calcium from the

sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat,

and frog hearts and from fetal and new-born rat ventricles. Ann. NY Acad. Sci.

307, 491–522 (1978).

Kawamura, M. et al. Genetic background of catecholaminergic polymorphic

ventricular tachycardia in Japan. Circ. J. 77, 1705–1713 (2013).

Pérez-Riera, A. R. et al. Catecholaminergic polymorphic ventricular

tachycardia, an update. Ann. Noninvas. Electrocardiol. 23, e12512 (2018).

Priori, S. G. et al. Clinical and molecular characterization of patients with

catecholaminergic polymorphic ventricular tachycardia. Circulation 106,

69–74 (2002).

Tester, D. J., Spoon, D. B., Valdivia, H. H., Makielski, J. C. & Ackerman, M. J.

Targeted mutational analysis of the RyR2-encoded cardiac ryanodine receptor

in sudden unexplained death: a molecular autopsy of 49 medical examiner/

coroner’s cases. Mayo Clin. Proc. 79, 1380–1384 (2004).

Fujii, Y. et al. A type 2 ryanodine receptor variant associated with reduced

Ca2+ release and short-coupled torsades de pointes ventricular arrhythmia.

Heart Rhythm 14, 98–107 (2017).

Jiang, D., Chen, W., Wang, R., Zhang, L. & Chen, S. R. Loss of luminal Ca2+

activation in the cardiac ryanodine receptor is associated with ventricular

fibrillation and sudden death. Proc. Natl Acad. Sci. USA 104, 18309–18314

(2007).

Paech, C. et al. Ryanodine receptor mutations presenting as idiopathic

ventricular fibrillation: a report on two novel familial compound mutations,

c.6224 T > C and c.13781 A > G, with the clinical presentation of idiopathic

ventricular fibrillation. Pediatr. Cardiol. 35, 1437–1441 (2014).

Hirose, S. et al. Loss-of-function mutations in cardiac ryanodine receptor

channel cause various types of arrhythmias including long QT syndrome.

Europace 24, 497–510 (2022).

Benkusky, N. A., Farrell, E. F. & Valdivia, H. H. Ryanodine receptor

channelopathies. Biochem. Biophys. Res. Commun. 322, 1280–1285

(2004).

Priori, S. G. & Chen, S. R. Inherited dysfunction of sarcoplasmic reticulum

Ca2+ handling and arrhythmogenesis. Circ. Res. 108, 871–883 (2011).

Clarke, O. B. & Hendrickson, W. A. Structures of the colossal RyR1 calcium

release channel. Curr. Opin. Struct. Biol. 39, 144–152 (2016).

Zalk, R. & Marks, A. R. Ca2+ release channels join the “resolution revolution”.

Trends Biochem. Sci. 42, 543–555 (2017).

Ogawa, H., Kurebayashi, N., Yamazawa, T. & Murayama, T. Regulatory

mechanisms of ryanodine receptor/Ca2+ release channel revealed by recent

advancements in structural studies. J. Muscle Res. Cell Motil. 42, 291–304

(2020).

Gong, D., Yan, N. & Ledford, H. A. Structural basis for the modulation of

ryanodine receptors. Trends Biochem. Sci. 46, 489–501 (2021).

des Georges, A. et al. Structural basis for gating and activation of RyR1. Cell

167, 145–157 (2016).

Murayama, T. et al. Genotype-phenotype correlations of malignant

hyperthermia and central core disease mutations in the central region of the

RYR1 Channel. Hum. Mutat. 37, 1231–1241 (2016).

Xu, L. et al. Ca2 + -mediated activation of the skeletal-muscle ryanodine

receptor ion channel. J. Biol. Chem. 293, 19501–19509 (2018).

Bai, X. C., Yan, Z., Wu, J. P., Li, Z. Q. & Yan, N. The Central domain of RyR1

is the transducer for long-range allosteric gating of channel opening. Cell Res.

26, 995–1006 (2016).

Wei, R. et al. Structural insights into Ca2+-activated long-range allosteric

channel gating of RyR1. Cell Res. 26, 977–994 (2016).

Peng, W. et al. Structural basis for the gating mechanism of the type 2

ryanodine receptor RyR2. Science 354, aah5324 (2016).

Gong, D. S. et al. Modulation of cardiac ryanodine receptor 2 by calmodulin.

Nature 572, 347–351 (2019).

Chi, X. et al. Molecular basis for allosteric regulation of the type 2 ryanodine

receptor channel gating by key modulators. Proc. Natl Acad. Sci. USA 116,

25575–25582 (2019).

Meissner, G. The structural basis of ryanodine receptor ion channel function.

J. Gen. Physiol. 149, 1065–1089 (2017).

Iyer, K. A. et al. Structural mechanism of two gain-of-function cardiac and

skeletal RyR mutations at an equivalent site by cryo-EM. Sci. Adv. 6, eabb2964

(2020).

Woll, K. A., Haji-Ghassemi, O., Van & Petegem, F. Pathological

conformations of disease mutant ryanodine receptors revealed by cryo-EM.

Nat. Commun. 12, 807 (2021).

Cabra, V., Murayama, T. & Samsó, M. Ultrastructural analysis of selfassociated RyR2s. Biophys. J. 110, 2651–2662 (2016).

31. Meissner, G. Ryanodine receptor/Ca2+ release channels and their regulation

by endogenous effectors. Annu Rev. Physiol. 56, 485–508 (1994).

32. Ogawa, Y. Role of ryanodine receptors. Crit. Rev. Biochem. Mol. Biol. 29,

229–274 (1994).

33. Murayama, T. et al. A tryptophan residue in the caffeine-binding site of the

ryanodine receptor regulates Ca2+ sensitivity. Commun. Biol. 1, 98 (2018).

34. Murayama, T. & Kurebayashi, N. Two ryanodine receptor isoforms in

nonmammalian vertebrate skeletal muscle: possible roles in excitationcontraction coupling and other processes. Prog. Biophys. Mol. Biol. 105,

134–144 (2011).

35. Uehara, A. et al. Extensive Ca2+ leak through K4750Q cardiac ryanodine

receptors caused by cytosolic and luminal Ca2+ hypersensitivity. J. Gen.

Physiol. 149, 199–218 (2017).

36. Yan, Z. et al. Structure of the rabbit ryanodine receptor RyR1 at near-atomic

resolution. Nature 517, 50–55 (2015).

37. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for

macromolecular structure determination. Acta Crystallogr D. 54, 905–921

(1998).

38. Ma, R. et al. Structural basis for diamide modulation of ryanodine receptor.

Nat. Chem. Biol. 16, 1246–1254 (2020).

39. Eletr, S. & Inesi, G. Phospholipid orientation in sarcoplasmic membranes:

spin-label ESR and proton MNR studies. Biochim Biophys. Acta 282, 174–179

(1972).

40. Mastronarde, D. N. Automated electron microscope tomography using robust

prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

41. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation

from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

42. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure

determination in RELION-3. eLife 7, e42166 (2018).

43. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development

of Coot. Acta Crystallogr D. 66, 486–501 (2010).

44. Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory

research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

45. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and

crystallography. Acta Crystallogr D. 74, 531–544 (2018).

46. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for

macromolecular structure solution. Acta Crystallogr D. 66, 213–221 (2010).

47. Smart, O. S., Goodfellow, J. M. & Wallace, B. A. The pore dimensions of

gramicidin A. Biophys. J. 65, 2455–2460 (1993).

48. Murayama, T. et al. Efficient high-throughput screening by endoplasmic

reticulum Ca2+ measurement to identify inhibitors of ryanodine receptor

Ca2+-release channels. Mol. Pharm. 94, 722–730 (2018).

49. Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators.

Science 333, 1888–1891 (2011).

50. Suzuki, J. et al. Imaging intraorganellar Ca2+ at subcellular resolution using

CEPIA. Nat. Commun. 5, 4153 (2014).

Acknowledgements

We thank Mariko Kurakata for her assistance with cell culture. We thank Ikue Hiraga

and the Laboratory of Radioisotope Research, Research Support Center, Juntendo University Graduate School of Medicine, for technical assistance. We also thank the staff

scientists at the University of Tokyo’s cryo-EM facility. This study was partly supported

by the Japan Society for the Promotion of Sciences KAKENHI (grant numbers 19K07105

and 22K06652 to N.K., 19H03404 and 22H02805 to T.M. and JP16H04748 and

21H02411 to H.O.); the Platform Project for Supporting Drug Discovery and Life Science

Research (Basis for Supporting Innovative Drug Discovery and Life Science Research

[BINDS]; grant number JP20am0101080 to H.O. and T.M. and JP19am0101115 (support

number 0064)); the Practical Research Project for Rare/Intractable Diseases from the

Japan Agency for Medical Research and Development (AMED; grant number

19ek0109202) to N.K.); an Intramural Research Grant (2–5) for Neurological and Psychiatric Disorders of NCNP (to T.M.); and the Vehicle Racing Commemorative Foundation (6114, 6237, and 6303) to T.M. and H.O.

Author contributions

T.K., N.K., T.M., and H.O. conceived and designed the project. M. Kodama and H.O.

performed cell culture. T.K. performed protein purification. K.S. performed negativestaining EM studies. A.T. and T.K. prepared the grid for cryo-EM. A.T. and M. Kikkawa

processed the images. H.O. performed model building and refinement. T.M. and N.K.

performed the functional analysis. T.K., A.T., N.K., K.S., M. Kodama, T.S., M. Kikkawa,

T.M., and H.O. interpreted the data. T.M. and H.O. supervised the project. H.O. and

T.M. wrote the manuscript with input from all authors. All authors reviewed the results

and approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

NATURE COMMUNICATIONS | (2022)13:2821 | https://doi.org/10.1038/s41467-022-30429-x | www.nature.com/naturecommunications

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30429-x

Additional information

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s41467-022-30429-x.

Correspondence and requests for materials should be addressed to Takashi Murayama

or Haruo Ogawa.

Peer review information Nature Communications thanks Huan Li and Montserrat

Samso for their contribution to the peer review of this work. Peer reviewer reports are

available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

ARTICLE

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2022

NATURE COMMUNICATIONS | (2022)13:2821 | https://doi.org/10.1038/s41467-022-30429-x | www.nature.com/naturecommunications

15

...

参考文献をもっと見る