リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Equiaxed grain formation by intrinsic heterogeneous nucleation via rapid heating and cooling in additive manufacturing of aluminum-silicon hypoeutectic alloy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Equiaxed grain formation by intrinsic heterogeneous nucleation via rapid heating and cooling in additive manufacturing of aluminum-silicon hypoeutectic alloy

Okugawa, Masayuki 大阪大学

2022.10.25

概要

The high strength of Al-Si hypoeutectic alloys additively manufactured by powder-bed fusion is of great scientific interest. To date, the mechanism of grain refinement near the fusion line, which contradicts conventional Hunt's columnar–equiaxed transition criteria, remains to be elucidated. Here we present the first report on the mechanism of grain refinement. When a laser was irradiated on cast Al-Si alloy consisting of coarse α-Al grain and α-Al/Si eutectic regions, grain refinement occurred only near the eutectic regions. This strongly suggests that the Si phase is crucial for grain refinement. Multi-phase-field simulation revealed that rapid heating due to the laser irradiation results in unmelted Si particles even above the liquidus temperature and that the particles act as heterogeneous nucleation sites during the subsequent re-solidification. These results suggest the feasibility of a novel inoculant-free grain refinement that is applicable to eutectic alloys comprising phases with a significant melting point difference.

この論文で使われている画像

参考文献

[1] H. Zhang, H. Zhu, X. Nie, J. Yin, Z. Hu, X. Zeng, Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu- Mg alloy, Scr. Mater. 134 (2017) 6–10, https://doi.org/10.1016/j.scriptamat.2017.02.036

[2] J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, 3D printing of high-strength aluminium alloys, Nature 549 (2017) 365–369, https:// doi.org/10.1038/nature23894

[3] K.V. Yang, Y. Shi, F. Palm, X. Wu, P. Rometsch, Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting, Scr. Mater. 145 (2018) 113–117, https://doi.org/10.1016/j.scriptamat.2017.10.021

[4] A. Aversa, G. Marchese, A. Saboori, E. Bassini, D. Manfredi, S. Biamino, D. Ugues,P. Fino, M. Lombardi, New aluminum alloys specifically designed for laser powder bed fusion: a review, Mater. (Basel). 12 (2019) 1007, https://doi.org/10. 3390/ma12071007

[5] M. Yi, P. Zhang, C. Yang, P. Cheng, S. Guo, G. Liu, J. Sun, Improving creep resistance of Al-12 wt% Ce alloy by microalloying with Sc, Scr. Mater. 198 (2021) 113838, https://doi.org/10.1016/j.scriptamat.2021.113838

[6] M. Tang, P.C. Pistorius, S. Narra, J.L. Beuth, Rapid solidification: selective laser melting of AlSi10Mg, Jom 68 (2016) 960–966, https://doi.org/10.1007/s11837-015-1763-3

[7] J. Liu, W. Xiong, A. Behera, S. Thompson, A.C. To, Mean-field polycrystal plasticity modeling with grain size and shape effects for laser additive manufactured FCC metals, Int. J. Solids Struct. 112 (2017) 35–42, https://doi.org/10.1016/j.ijsolstr.2017.02.024

[8] Y. Yang, Y. Chen, J. Zhang, X. Gu, P. Qin, N. Dai, X. Li, J.-P. Kruth, L.-C. Zhang, Improved corrosion behavior of ultrafine-grained eutectic Al-12Si alloy pro- duced by selective laser melting, Mater. Des. 146 (2018) 239–248, https://doi. org/10.1016/j.matdes.2018.03.025

[9] N. Takata, H. Kodaira, A. Suzuki, M. Kobashi, Size dependence of microstructure of AlSi10Mg alloy fabricated by selective laser melting, Mater. Charact. 143 (2018) 18–26, https://doi.org/10.1016/j.matchar.2017.11.052

[10] N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting, Prog. Mater. Sci. 106 (2019) 100578, https://doi.org/10.1016/j. pmatsci.2019.100578

[11] X. Liu, C. Zhao, X. Zhou, Z. Shen, W. Liu, Microstructure of selective laser melted AlSi10Mg alloy, Mater. Des. 168 (2019) 107677, https://doi.org/10.1016/j.matdes.2019.107677

[12] I.M. Kusoglu, B. Gökce, S. Barcikowski, Research trends in laser powder bed fu- sion of Al alloys within the last decade, Addit. Manuf. 36 (2020) 101489, https:// doi.org/10.1016/j.addma.2020.101489

[13] H. Bian, K. Aoyagi, Y. Zhao, C. Maeda, T. Mouri, A. Chiba, Microstructure refine- ment for superior ductility of Al–Si alloy by electron beam melting, Addit.Manuf. 32 (2020) 100982, https://doi.org/10.1016/j.addma.2019.100982

[14] M.N. Patel, D. Qiu, G. Wang, M.A. Gibson, A. Prasad, D.H. StJohn, M.A. Easton, Understanding the refinement of grains in laser surface remelted Al–Cu alloys,Scr. Mater. 178 (2020) 447–451, https://doi.org/10.1016/j.scriptamat.2019.12.020

[15] J.D.D. Hunt, Steady state columnar and equiaxed growth of dendrites and eu- tectic, Mater. Sci. Eng. 65 (1984) 75–83, https://doi.org/10.1016/0025-5416(84)90201-5

[16] X. Ding, Y. Koizumi, D. Wei, A. Chiba, Effect of process parameters on melt pool geometry and microstructure development for electron beam melting of IN718: a systematic single bead analysis study, Addit. Manuf. 26 (2019) 215–226, https://doi.org/10.1016/j.addma.2018.12.018

[17] S. Bontha, N.W. Klingbeil, P.A. Kobryn, H.L. Fraser, Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures, Mater. Sci. Eng. A. 513–514 (2009) 311–318, https://doi.org/10.1016/j. msea.2009.02.019

[18] B. Schoinochoritis, D. Chantzis, K. Salonitis, Simulation of metallic powder bed additive manufacturing processes with the finite element method: a critical review, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231 (2017) 96–117, https://doi. org/10.1177/0954405414567522

[19] J. Gockel, J. Beuth, Understanding Ti-6Al-4V microstructure control in additive manufacturing via process maps, 24th Int. SFF Symp. - An Addit. Manuf. Conf. SFF 2013. (2013) 666–674.

[20] Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka, A. Chiba, Molten pool be- havior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy, Addit. Manuf. 26 (2019) 202–214, https://doi.org/10.1016/j.addma.2018.12.002

[21] A. Prasad, L. Yuan, P. Lee, M. Patel, D. Qiu, M. Easton, D. StJohn, Towards un- derstanding grain nucleation under Additive Manufacturing solidification con- ditions, Acta Mater. 195 (2020) 392–403, https://doi.org/10.1016/j.actamat.2020.05.012

[22] Y. Miyata, M. Okugawa, Y. Koizumi, T. Nakano, Inverse columnar-equiaxed transition (CET) in 304 and 316L stainless steels melt by electron beam for ad- ditive manufacturing (AM), Crystals 11 (2021) 856, https://doi.org/10.3390/ cryst11080856

[23] A.S. Sabau, L. Yuan, N. Raghavan, M. Bement, S. Simunovic, J.A. Turner,V.K. Gupta, Fluid dynamics effects on microstructure prediction in single-laser tracks for additive manufacturing of IN625, Metall. Mater. Trans. B. 51 (2020) 1263–1281, https://doi.org/10.1007/s11663-020-01808-w

[24] J. Hutt, D. StJohn, The origins of the equiaxed zone -review of theoretical and experimental work, Int. J. Cast. Met. Res. 11 (1998) 13–22, https://doi.org/10. 1080/13640461.1998.11819254

[25] N. Sohrabi, J.E.K. Schawe, J. Jhabvala, J.F. Löffier, R.E. Logé, Critical crystallization properties of an industrial-grade Zr-based metallic glass used in additive man- ufacturing, Scr. Mater. 199 (2021) 113861, https://doi.org/10.1016/j.scriptamat.2021.113861

[26] A.A. Martin, N.P. Calta, S.A. Khairallah, J. Wang, P.J. Depond, A.Y. Fong, V. Thampy,G.M. Guss, A.M. Kiss, K.H. Stone, C.J. Tassone, J. Nelson Weker, M.F. Toney, T. van Buuren, M.J. Matthews, Dynamics of pore formation during laser powder bed fusion additive manufacturing, Nat. Commun. 10 (2019) 1–10, https://doi.org/10. 1038/s41467-019-10009-2

[27] J.L. Murray, A.J. McAlister, The Al-Si (aluminum-silicon) system, Bull. Alloy Phase Diagr. 5 (1984) 74–84, https://doi.org/10.1007/BF02868729

[28] MICRostructure Evolution Simulation Software, phase-field software package,〈www.micress.de〉.

[29] J. Eiken, B. Böttger, I. Steinbach, Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application, Phys. Rev. E. 73 (2006) 1–9, https://doi.org/10.1103/PhysRevE.73.066122

[30] J.O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science, Calphad 26 (2002) 273–312, https://doi.org/10.1016/S0364-5916(02)00037-8

[31] H. Zhang, Y. Wang, S.L. Shang, C. Ravi, C. Wolverton, L.Q. Chen, Z.K. Liu, Solvus boundaries of (meta)stable phases in the Al-Mg-Si system: First-principlesphonon calculations and thermodynamic modeling, Calphad 34 (2010) 20–25, https://doi.org/10.1016/j.calphad.2009.10.009

[32] J. Eiken, M. Apel, S.M. Liang, R. Schmid-Fetzer, Impact of P and Sr on solidifi- cation sequence and morphology of hypoeutectic Al-Si alloys: Combined ther- modynamic computation and phase-field simulation, Acta Mater. 98 (2015) 152–163, https://doi.org/10.1016/j.actamat.2015.06.056

[33] J. Eiken, M. Apel, Eutectic morphology evolution and Sr-modification in Al-Si based alloys studied by 3D phase-field simulation coupled to Calphad data, IOP Conf. Ser. Mater. Sci. Eng. 84 (2015) 012084, https://doi.org/10.1088/1757-899X/ 84/1/012084

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る