リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Gait-combined closed-loop brain stimulation can improve walking dynamics in Parkinsonian gait disturbances: a randomised-control trial」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Gait-combined closed-loop brain stimulation can improve walking dynamics in Parkinsonian gait disturbances: a randomised-control trial

Nojima, Ippei Horiba, Mitsuya Sahashi, Kento Koganemaru, Satoko Murakami, Satona Aoyama, Kiminori Matsukawa, Noriyuki Ono, Yumie Mima, Tatsuya Ueki, Yoshino 京都大学 DOI:10.1136/jnnp-2022-329966

2023.11

概要

[Objective] Gait disturbance lowers activities of daily living in patients with Parkinson’s disease (PD) and related disorders. However, the effectiveness of pharmacological, surgical and rehabilitative treatments is limited. We recently developed a novel neuromodulation approach using gait-combined closed-loop transcranial electrical stimulation (tES) for healthy volunteers and patients who are post-stroke, and achieved significant entrainment of gait rhythm and an increase in gait speed. Here, we tested the efficacy of this intervention in patients with Parkinsonian gait disturbances. [Methods] Twenty-three patients were randomly assigned to a real intervention group using gait-combined closed-loop oscillatory tES over the cerebellum at the frequency of individualised comfortable gait rhythm, and to a sham control group. [Results] Ten intervention sessions were completed for all patients and showed that the gait speed (F(1, 21)=13.0, p=0.002) and stride length (F(1, 21)=8.9, p=0.007) were significantly increased after tES, but not after sham stimulation. Moreover, gait symmetry measured by swing phase time (F(1, 21)=11.9, p=0.002) and subjective feelings about freezing (F(1, 21)=14.9, p=0.001) were significantly improved during gait. [Conclusions] These findings showed that gait-combined closed-loop tES over the cerebellum improved Parkinsonian gait disturbances, possibly through the modulation of brain networks generating gait rhythms. This new non-pharmacological and non-invasive intervention could be a breakthrough in restoring gait function in patients with PD and related disorders.

参考文献

1.

Ruppert MC, Greuel A, Tahmasian M, et al. Network degeneration in Parkinson's

disease: multimodal imaging of nigro-striato-cortical dysfunction. Brain 2020;143:944-959.

2.

Fasano A, Aquino CC, Krauss JK, Honey CR, Bloem BR. Axial disability and deep brain

stimulation in patients with Parkinson disease. Nat Rev Neurol 2015;11:98-110.

3.

Beretta VS, Conceicao NR, Nobrega-Sousa P, et al. Transcranial direct current

stimulation combined with physical or cognitive training in people with Parkinson's disease: a

systematic review. J Neuroeng Rehabil 2020;17:74.

4.

Kim YW, Shin IS, Moon HI, Lee SC, Yoon SY. Effects of non-invasive brain stimulation

on freezing of gait in parkinsonism: A systematic review with meta-analysis. Parkinsonism Relat

Disord 2019;64:82-89.

5.

Costa-Ribeiro A, Maux A, Bosford T, et al. Transcranial direct current stimulation

associated with gait training in Parkinson's disease: A pilot randomized clinical trial. Dev

Neurorehabil 2017;20:121-128.

6.

Schulz R, Gerloff C, Hummel FC. Non-invasive brain stimulation in neurological

diseases. Neuropharmacology 2013;64:579-587.

7.

Koganemaru S, Mikami Y, Maezawa H, et al. Anodal transcranial patterned stimulation

of the motor cortex during gait can induce activity-dependent corticospinal plasticity to alter

human gait. PLoS One 2018;13:e0208691.

8.

Koganemaru S, Kitatani R, Fukushima-Maeda A, et al. Gait-Synchronized Rhythmic

Brain Stimulation Improves Poststroke Gait Disturbance: A Pilot Study. Stroke 2019;50:32053212.

9.

Groppa S, Bergmann TO, Siems C, Molle M, Marshall L, Siebner HR. Slow-oscillatory

transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability

in awake humans. Neuroscience 2010;166:1219-1225.

10.

Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K. Stimulation of a

restricted region in the midline cerebellar white matter evokes coordinated quadrupedal

locomotion in the decerebrate cat. J Neurophysiol 1999;82:290-300.

11.

Fukuyama H, Ouchi Y, Matsuzaki S, et al. Brain functional activity during gait in normal

subjects: a SPECT study. Neurosci Lett 1997;228:183-186.

12.

Hanakawa T, Katsumi Y, Fukuyama H, et al. Mechanisms underlying gait disturbance in

Parkinson's disease: a single photon emission computed tomography study. Brain 1999;122 ( Pt

7):1271-1282.

13.

Yamanouchi H, Nagura H. Neurological signs and frontal white matter lesions in vascular

parkinsonism. A clinicopathologic study. Stroke 1997;28:965-969.

PAGE 26 14.

Armstrong MJ, Litvan I, Lang AE, et al. Criteria for the diagnosis of corticobasal

degeneration. Neurology 2013;80:496-503.

15.

Litvan I, Agid Y, Calne D, et al. Clinical research criteria for the diagnosis of progressive

supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP

international workshop. Neurology 1996;47:1-9.

16.

Gilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis of

multiple system atrophy. Neurology 2008;71:670-676.

17.

Kitatani R, Koganemaru S, Maeda A, et al. Gait-synchronized oscillatory brain

stimulation modulates common neural drives to ankle muscles in patients after stroke: A pilot study.

Neurosci Res 2020;156:256-264.

18.

Kitatani R, Koganemaru S, Maeda A, et al. Gait-combined transcranial alternating

current stimulation modulates cortical control of muscle activities during gait. Eur J Neurosci

2020;52:4791-4802.

19.

Awad LN, Palmer JA, Pohlig RT, Binder-Macleod SA, Reisman DS. Walking speed and

step length asymmetry modify the energy cost of walking after stroke. Neurorehabil Neural Repair

2015;29:416-423.

20.

Ali MM, Sellers KK, Frohlich F. Transcranial alternating current stimulation modulates

large-scale cortical network activity by network resonance. J Neurosci 2013;33:11262-11275.

21.

Reato D, Rahman A, Bikson M, Parra LC. Effects of weak transcranial alternating current

stimulation on brain activity-a review of known mechanisms from animal studies. Front Hum

Neurosci 2013;7:687.

22.

Zivanovic M, Bjekic J, Konstantinovic U, Filipovic SR. Effects of online parietal

transcranial electric stimulation on associative memory: a direct comparison between tDCS, theta

tACS, and theta-oscillatory tDCS. Sci Rep 2022;12:14091.

23.

Naro A, Bramanti A, Leo A, et al. Effects of cerebellar transcranial alternating current

stimulation on motor cortex excitability and motor function. Brain Struct Funct 2017;222:28912906.

24.

Asanome M, Matsuyama K, Mori S. Augmentation of postural muscle tone induced by

the stimulation of the descending fibers in the midline area of the cerebellar white matter in the

acute decerebrate cat. Neurosci Res 1998;30:257-269.

25.

Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum.

Proc Natl Acad Sci U S A 2010;107:8452-8456.

26.

Wu T, Hallett M. The cerebellum in Parkinson's disease. Brain 2013;136:696-709.

27.

Bedard P, Sanes JN. On a basal ganglia role in learning and rehearsing visual-motor

associations. Neuroimage 2009;47:1701-1710.

28.

Takeuchi Y, Berenyi A. Oscillotherapeutics - Time-targeted interventions in epilepsy and

PAGE 27 beyond. Neurosci Res 2020;152:87-107.

29.

Takeuchi Y, Harangozo M, Pedraza L, et al. Closed-loop stimulation of the medial

septum terminates epileptic seizures. Brain 2021;144:885-908.

30.

Franca C, de Andrade DC, Teixeira MJ, et al. Effects of cerebellar neuromodulation in

movement disorders: A systematic review. Brain Stimul 2018;11:249-260.

31.

Weiss D, Schoellmann A, Fox MD, et al. Freezing of gait: understanding the complexity

of an enigmatic phenomenon. Brain 2020;143:14-30.

32.

Wang M, Jiang S, Yuan Y, et al. Alterations of functional and structural connectivity of

freezing of gait in Parkinson's disease. J Neurol 2016;263:1583-1592.

33.

Ballanger B, Lozano AM, Moro E, et al. Cerebral blood flow changes induced by

pedunculopontine nucleus stimulation in patients with advanced Parkinson's disease: a [(15)O]

H2O PET study. Hum Brain Mapp 2009;30:3901-3909.

34.

Martinez-Fernandez R, Rodriguez-Rojas R, Del Alamo M, et al. Focused ultrasound

subthalamotomy in patients with asymmetric Parkinson's disease: a pilot study. Lancet Neurol

2018;17:54-63.

35.

Ferrucci R, Bocci T, Cortese F, Ruggiero F, Priori A. . Cerebellum Ataxias 2016;3:16.

36.

Kaski D, Dominguez RO, Allum JH, Islam AF, Bronstein AM. Combining physical

training with transcranial direct current stimulation to improve gait in Parkinson's disease: a pilot

randomized controlled study. Clin Rehabil 2014;28:1115-1124.

37.

Manenti R, Brambilla M, Benussi A, et al. Mild cognitive impairment in Parkinson's

disease is improved by transcranial direct current stimulation combined with physical therapy.

Mov Disord 2016;31:715-724.

38.

Ferrucci R, Cortese F, Bianchi M, et al. Cerebellar and Motor Cortical Transcranial

Stimulation Decrease Levodopa-Induced Dyskinesias in Parkinson's Disease. Cerebellum

2016;15:43-47.

39.

Workman CD, Fietsam AC, Uc EY, Rudroff T. Cerebellar Transcranial Direct Current

Stimulation in People with Parkinson's Disease: A Pilot Study. Brain Sci 2020;10.

40.

Ueki Y, Mima T, Kotb MA, et al. Altered plasticity of the human motor cortex in

Parkinson's disease. Ann Neurol 2006;59:60-71.

TABLES

Table 1. Baseline patients’ characteristic

Group

Age

Diagnosis

Sex

Stim Freq (Hz)

Duration(m)

Yahr

UPDRS III

Domi

MMSE

FOGQ

LEDD (mg)

Real

64

PD

1.02

144

38

30

17

519

76

PD

1.08

66

14

23

500

58

CBS

1.23

29

30

30

300

78

CVD

0.67

58

29

18

80

CBS

1.05

12

22

29

400

69

PD

1.04

18

17

29

14

250

53

PD

0.96

27

11

30

10

200

63

PD

0.92

53

18

29

300

68

PD

1.03

64

22

30

13

200

76

PD

1.05

116

20

28

18

325

79

SCD

0.59

79

14

30

16

73

CVD

0.98

48

18

28

11

73

PD

53

12

25

350

61

PD

48

22

29

300

45

CBS

45

22

30

15

250

70

PD

45

24

24

540

66

PD

132

31

29

14

739

80

PSP

21

34

13

200

80

PD

18

23

200

71

PD

29

17

29

11

200

54

PD

71

30

66

PD

157

38

30

11

589

86

SCD

132

31

30

550

Sham

PAGE 29 5

Data are presented as mean (SD) or n. MDS-UPDRS= Movement Disorders Society-Unified Parkinson’s Disease Rating Scale. According to both the dyskinesia rating scale (items

1-11 for on-dyskinesia and 12-15 for off-dystonia) and the MDS-UPDRS IV. Off-medication dystonia in all patients was restricted to the most affected side of the body. The MDS-

UPDRS III scores range from 0 to 108, with higher scores indicating more severe clinical features. The off-medication state was defined as a minimum 12 h overnight withdrawal

of standard-release anti-parkinsonian drugs and a 24 h withdrawal of prolonged-release anti-parkinsonian drugs. The on-medication state was defined by both the patient and clinician,

indicating that the medication had been effective for at least 30 min after intake.

10

11

12

13

FIGURE LEGENDS

14

15

Figure 1. Experimental protocol: In the tES gait condition, electrical current was delivered with a

16

sinusoidal waveform with 2 mA peak. Each current started at the time of heel contact on the severe side

17

during a self-paced 4 min gait. The active electrode (5×5 cm) was applied 3 cm left or right from the inion

18

for cerebellum stimulation. The counter electrode was placed over the opposite position to stimulate the

19

cerebellum.

20

21

Figure 2. Gait parameters: Effects of 10 times administration of intervention on gait parameters. A) The

22

speed of the comfortable pace, B) length of stride in the comfortable pace, C) ratio of the swing phase on

23

the severe side, D) symmetry index in swing phase time, E) ratio of stance phase on the severe side were

24

improved after the tES gait intervention, compared with those after sham intervention.

25

26

Figure 3. Freezing of Gait Questionnaire: The effects of tES or sham stimulation on self-reported severity of

27

freezing of gait (FOG). Participants were asked to rate their change in FOG severity using a Likert scale

28

ranging from 0 to 24 points, showing that higher scores correspond to more severe FOG. The tES

29

synchronized with gait intervention showed significant improvement in FOG after the intervention.

30

31

A)

Time

160

B)

C)

Pre

0.80

Time

Pre

Post

Post

0.40

Stance phase time (s)

120

Swing phase time (s)

Gait Speed(cm/s)

0.75

100

0.35

0.30

0.25

0.70

0.65

Time

80

0.60

Pre

Post

0.20

Real

Sham

Real

Intervention

D)

E)

Pre

Post

Pre

Post

stride length (cm)

Symmetry Index

0.56

0.54

100

0.52

50

0.50

Sham

Intervention

Real

Sham

Intervention

Sham

Intervention

Time

Time

Real

Real

Sham

Intervention

Time

Pre

Post

FOGQ score

15

10

Real

Sham

Intervention

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る