リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Antiapoptotic Effect by PAR-1 Antagonist Protects Mouse Liver Against Ischemia-Reperfusion Injury」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Antiapoptotic Effect by PAR-1 Antagonist Protects Mouse Liver Against Ischemia-Reperfusion Injury

Noguchi Daisuke 三重大学

2020.06.09

概要

Background: Coagulation disturbances in several liver diseases lead to thrombin generation, which triggers intracellular injury via activation of protease-activated receptor-1 (PAR-1). Little is known about the thrombin/PAR-1 pathway in hepatic ischemia-reperfusion injury (IRI). The present study aimed to clarify whether a newly selective PAR-1 antagonist, vorapaxar, can attenuate liver damage caused by hepatic IRI, with a focus on apoptosis and the survival-signaling pathway.
Methods: A 60-min hepatic partial-warm IRI model was used to evaluate PAR-1 expression in vivo. Subsequently, IRI mice were treated with or without vorapaxar (with vehicle). In addition, hepatic sinusoidal endothelial cells (SECs) pretreated with or without vorapaxar (with vehicle) were incubated during hypoxia-reoxygenation in vitro.
Results:In naıve livers, PAR-1 was confirmed by immunohistochemistry and immunofluorescence analysis to be located on hepatic SECs, and IRI strongly enhanced PAR-1 expression. In IRI mice models, vorapaxar treatment significantly decreased serum transaminase levels, improved liver histological damage, reduced the number of apoptotic cells as evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling staining (median: 135 versus 25, P = 0.004), and induced extracellular signal-regulated ki- nase 1/2 (ERK 1/2) cell survival signaling (phospho-ERK/total ERK 1/2: 0.96 versus 5.34, P=0.004). Pretreatment of SECs with vorapaxar significantly attenuated apoptosis and induced phosphorylation of ERK 1/2 in vitro (phospho-ERK/total ERK 1/2: 0.66 versus 3.04, P=0.009). These changes were abolished by the addition of PD98059, the ERK 1/2 pathway inhibitor, before treatment with vorapaxar.
Conclusions: The results of the present study revealed that hepatic IRI induces significant enhancement of PAR-1 expression on SECs, which may be associated with suppression of survival signaling pathways such as ERK 1/2, resulting in severe apoptosis-induced hepatic damage. Thus, the selective PAR-1 antagonist attenuates hepatic IRI through an anti- apoptotic effect by the activation of survival-signaling pathways.

参考文献

1. Zhai Y, Busuttil RW, Kupiec-Weglinski JW. Liver ischemia and

reperfusion injury: new Insights into mechanisms of innateadaptive immune-mediated tissue inflammation. Am J

Transplant. 2011;11:1563e1569.

2. Fondevila C, Busuttil RW, Kupiec-Weglinski JW. Hepatic

ischemia/reperfusion injuryda fresh look. Exp Mol Pathol.

2003;74:86e93.

3. Selzner N. Protective strategies against ischemic injury of the

liver. Gastroenterology. 2003;125:917e936.

4. Lisman T, Porte RJ. Rebalanced hemostasis in patients with

liver disease: evidence and clinical consequences. Blood.

2010;116:878e885.

5. Kloek J, Heger M, Gaag NVD, et al. Effect of preoperative

biliary drainage on coagulation and fibrinolysis in severe

obstructive cholestasis. J Clin Gastroenterol. 2010;44:646e652.

6. Kassel KM, Owens AP, Rockwell CE, et al. Protease-activated

receptor 1 and hematopoietic cell tissue factor are required

for hepatic steatosis in mice fed a western diet. Ajpa.

2011;179:2278e2289.

7. Owens III AP, Passam FH, Antoniak S, et al. Monocyte tissue

factoredependent activation of coagulation in

hypercholesterolemic mice and monkeys is inhibited by

simvastatin. J Clin Invest. 2012;122:558e568.

8. Coughlin SR. Protease-activated receptors in hemostasis,

thrombosis and vascular biology. J Thromb Haemost.

2005;3:1800e1814.

9. Kassel KM, Sullivan BP, Cui W, Copple BL, Luyendyk JP.

Therapeutic administration of the direct thrombin inhibitor

argatroban reduces hepatic inflammation in mice with

established fatty liver disease. Ajpa. 2012;181:1287e1295.

10. Kopec AK, Joshi N, Towery KL, et al. Thrombin inhibition with

dabigatran protects against high-fat diet-induced fatty liver

disease in mice. J Pharmacol Exp Ther. 2014;351:288e297.

11. Luyendyk JP, Sullivan BP, Guo GL, Wang R. Tissue factordeficiency and protease activated receptor-1-deficiency

reduce inflammation elicited by diet-induced steatohepatitis

in mice. Ajpa. 2010;176:177e186.

12. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning

of a functional thrombin receptor reveals a novel proteolytic

mechanism of receptor activation. Cell. 1991;64:1057e1068.

13. Charles TE. The protein C pathway. Chest. 2003;124:26Se32S.

15

14. McLaughlin JN, Shen L, Holinstat M, Brooks JD, DiBenedetto E,

Hamm HE. Functional selectivity of G protein signaling by

agonist peptides and thrombin for the protease-activated

receptor-1. J Biol Chem. 2005;280:25048e25059.

15. Ossovskaya VS, Bunnett NW. Protease-activated receptors:

contribution to physiology and disease. Physiol Rev.

2004;84:579e621.

16. Kaplanski G, Marin V, Fabrigoule M, et al. Thrombin-activated

human endothelial cells support monocyte adhesion in vitro

following expression of intercellular adhesion molecule-1

(ICAM-1; CD54) and vascular cell adhesion molecule-1

(VCAM-1; CD106). Blood. 1998;92:1259e1267.

17. Mosnier LO, Sinha RK, Burnier L, Bouwens EA, Griffin JH.

Biased agonism of protease-activated receptor 1 by activated

protein C caused by noncanonical cleavage at Arg46. Blood.

2012;120:5237e5246.

18. Finigan JH, Dudek SM, Singleton PA, et al. Activated protein C

mediates novel lung endothelial barrier enhancement. J Biol

Chem. 2005;280:17286e17293.

19. Joyce DE, Gelbert L, Ciaccia A, DeHoff B, Grinnell BW. Gene

expression profile of antithrombotic protein c defines new

mechanisms modulating inflammation and apoptosis. J Biol

Chem. 2001;276:11199e11203.

20. Kuriyama N, Isaji S, Hamada T, et al. The cytoprotective

effects of addition of activated protein C into preservation

solution on small-for-size grafts in rats. Liver Transpl.

2010;16:1e11.

21. Matsuda A, Kuriyama N, Kato H, et al. Research article

comparative study on the cytoprotective effects of activated

protein C treatment in nonsteatotic and steatotic livers under

ischemia-reperfusion injury. Biomed Res Int. 2015;2015:1e13.

22. Ito T, Kuriyama N, Kato H, et al. Sinusoidal protection by

sphingosine-1-phosphate receptor 1 agonist in liver

ischemia-reperfusion injury. J Surg Res. 2018;222:139e152.

23. Feistritzer C. Endothelial barrier protection by activated

protein C through PAR1-dependent sphingosine 1-phosphate

receptor-1 crossactivation. Blood. 2005;105:3178e3184.

24. Ludeman MJ, Kataoka H, Srinivasan Y, Esmon NL, Esmon CT,

Coughlin SR. PAR1 cleavage and signaling in response to

activated protein C and thrombin. J Biol Chem.

2005;280:13122e13128.

25. White LE, Hassoun HT. Inflammatory mechanisms of organ

crosstalk during ischemic acute kidney injury. Int J Nephrol.

2012;2012:505197.

26. Chong AJ, Pohlman TH, Hampton CR, Shimamoto A,

Mackman N, Verrier ED. Tissue factor and thrombin mediate

myocardial ischemia-reperfusion injury. Ann Thorac Surg.

2003;75:S649eS655.

27. Rajput PS, Lyden PD, Chen B, et al. Protease activated

receptor-1 mediates cytotoxicity during ischemia using

in vivo and in vitro models. Neuroscience. 2014;281:229e240.

28. Eter El EA, Aldrees A. Inhibition of proinflammatory cytokines

by SCH79797, a selective protease-activated receptor 1

antagonist, protects rat kidney against ischemia-reperfusion

injury. Shock. 2012;37:639e644.

29. Strande JL, Hsu A, Su J, Fu X, Gross GJ, Baker JE. SCH 79797, a

selective PAR1 antagonist, limits myocardial ischemia/

reperfusion injury in rat hearts. Basic Res Cardiol.

2007;102:350e358.

30. Wang J, Jin H, Hua Y, Keep RF, Xi G. Role of protease-activated

receptor-1 in brain injury after experimental global cerebral

ischemia. Stroke. 2012;43:2476e2482.

31. Jose´ RJ, Williams AE, Mercer PF, Sulikowski MG, Brown JS,

Chambers RC. Regulation of neutrophilic inflammation by

proteinase-activated receptor 1 during bacterial pulmonary

infection. J Immunol. 2015;194:6024e6034.

32. Chackalamannil S, Wang Y, Greenlee WJ, et al. Discovery of a

novel, orally active himbacine-based thrombin receptor

ARTICLEI

NPRESS

16

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

j o u r n a l o f s u r g i c a l r e s e a r c h  - 2 0 1 9 ( - ) 1 e1 6

antagonist (SCH 530348) with potent antiplatelet activity. J

Med Chem. 2008;51:3061e3064.

Hamada T, Fondevila C, Busuttil RW, Coito AJ.

Metalloproteinase-9 deficiency protects against hepatic

ischemia/reperfusion injury. Hepatology. 2007;47:186e198.

Suzuki S, Toledo-Pereyra LH, Rodriguez FJ, Cejalvo D.

Neutrophil infiltration as an important factor in liver

ischemia and reperfusion injury. Modulating effects of FK506

and cyclosporine. Transplantation. 1993;55:1265e1272.

Duarte S, Hamada T, Kuriyama N, Busuttil RW, Coito AJ.

TIMP-1 deficiency leads to lethal partial hepatic ischemia and

reperfusion injury. Hepatology. 2012;56:1074e1085.

Wei R, Zhang R, Xie Y, Shen L, Chen F. Hydrogen suppresses

hypoxia/reoxygenation-induced cell death in hippocampal

neurons through reducing oxidative stress. Cell Physiol

Biochem. 2015;36:585e598.

Xie F, Li Z-P, Wang H-W, et al. Evaluation of liver ischemiareperfusion injury in rabbits using a nanoscale ultrasound

contrast agent targeting ICAM-1. PLoS One. 2016;11:e0153805.

Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R.

Proteinase-activated receptors. Pharmacol Rev.

2001;53:245e282.

Vergnolle N. Modulation of visceral pain and inflammation by

protease-activated receptors. Br J Pharmacol.

2004;141:1264e1274.

Tsuboi H, Naito Y, Katada K, et al. Role of the thrombin/

protease-activated receptor 1 pathway in intestinal ischemiareperfusion injury in rats. Am J Physiol Gastrointest Liver

Physiol. 2007;292:G678eG683.

Rezaie A. Protease-activated receptor signalling by

coagulation proteases in endothelial cells. Thromb Haemost.

2017;112:876e882.

Marra F, DeFranco R, Grappone C, et al. Expression of the

thrombin receptor in human liver: up-regulation during acute

and chronic injury. Hepatology. 1998;27:462e471.

Rullier A, Senant N, Kisiel W, et al. Expression of proteaseactivated receptors and tissue factor in human liver. Virchows

Arch. 2005;448:46e51.

Dupuy E, Hainaud P, Villemain A, et al. Tumoral angiogenesis

and tissue factor expression during hepatocellular carcinoma

progression in a transgenic mouse model. J Hepatol.

2003;38:793e802.

Kohli V, Selzner M, Madden JF, Bentley RC, Clavien P-A.

Endothelial cell and hepatocyte deaths occur by apoptosis

after ischemia-reperfusion injury in the rat liver.

Transplantation. 1999;67:1099e1105.

Natori S, Selzner M, Valentino KL, et al. Apoptosis of

sinusoidal endothelial cells occurs during liver preservation

injury by a caspase-dependent mechanism. Transplantation.

1999;68:89e96.

Yufu T, Hirano K, Bi D, et al. Rac1 regulation of surface

expression of protease-activated receptor-1 and

responsiveness to thrombin in vascular smooth muscle cells.

Arterioscler Thromb Vasc Biol. 2005;25:1506e1511.

Yokomori H, Oda M, Yoshimura K, et al. Caveolin-1 and rac

regulate endothelial capillary-like tubular formation and

fenestral contraction in sinusoidal endothelial cells. Liver Int.

2009;29:266e276.

Flynn AN, Buret AG. Proteinase-activated receptor 1 (PAR-1)

and cell apoptosis. Apoptosis. 2004;9:729e737.

Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical

pathways of caspase activation during apoptosis. Annu Rev

Cell Dev Biol. 1999;15:269e290.

51. Salvesen GS, Abrams JM. Caspase activation e stepping on

the gas or releasing the brakes? Lessons from humans and

flies. Oncogene. 2004;23:2774e2784.

52. Kim HN, Kim YR, Ahn SM, Lee SK, Shin HK, Choi BT. Protease

activated receptor-1 antagonist ameliorates the clinical

symptoms of experimental autoimmune encephalomyelitis

via inhibiting breakdown of blood-brain barrier. J Neurochem.

2015;135:577e588.

53. Nowatari T, Murata S, Nakayama K, et al. Sphingosine 1phosphate has anti-apoptotic effect on liver sinusoidal

endothelial cells and proliferative effect on hepatocytes in a

paracrine manner in human. Hepatol Res. 2014;45:1136e1145.

54. Cantley LC. The phosphoinositide 3-kinase pathway. Science.

2002;296:1655e1657.

55. Zhang R, Zhang L, Manaenko A, Ye Z, Liu W, Sun X. Helium

preconditioning protects mouse liver against ischemia and

reperfusion injury through the PI3K/Akt pathway. J Hepatol.

2014;61:1048e1055.

56. Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis.

IUBMB Life. 2006;58:621e631.

57. Yang J-Y, Michod D, Walicki J, Widmann C. Surviving the kiss

of death. Biochem Pharmacol. 2004;68:1027e1031.

58. Perkins D, Pereira EFR, Aurelian L. The herpes simplex

virus type 2 R1 protein kinase (ICP10 PK) functions as a

dominant regulator of apoptosis in hippocampal neurons

involving activation of the ERK survival pathway and

upregulation of the antiapoptotic protein Bag-1. J Virol.

2003;77:1292e1305.

59. Yang J-N, Chen J, Xiao M. A protease-activated receptor 1

antagonist protects against global cerebral ischemia/

reperfusion injury after asphyxial cardiac arrest in rabbits.

Neural Regen Res. 2017;12:242e248.

60. Thomas CJ, Lim NR, Kedikaetswe A, et al. Evidence that the

MEK/ERK but not the PI3K/Akt pathway is required for

protection from myocardial ischemiaereperfusion injury by

30 ,40 -dihydroxyflavonol. Eur J Pharmacol. 2015;758:53e59.

61. Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase

signalling: taking a RISK for cardioprotection. Heart Fail Rev.

2007;12:217e234.

62. Allan LA, Morrice N, Brady S, Magee G, Pathak S, Clarke PR.

Inhibition of caspase-9 through phosphorylation at Thr 125

by ERK MAPK. Nat Cell Biol. 2003;5:647e654.

63. Segarra J, Balenci L, Drenth T, Maina F, Lamballe F. Combined

signaling through ERK, PI3K/AKT, and RAC1/p38 is required

for met-triggered cortical neuron migration. J Biol Chem.

2006;281:4771e4778.

64. Zhou J, Du T, Li B, Rong Y, Verkhratsky A, Peng L. Crosstalk

between MAPK/ERK and PI3K/AKT signal pathways during

brain ischemia/reperfusion. ASN Neuro. 2015;7,

175909141560246.

65. Wang H, Ubl JJ, Stricker R, Reiser G. Thrombin (PAR-1)induced proliferation in astrocytes via MAPK involves

multiple signaling pathways. Am J Physiol Cell Physiol.

2002;283:C1351eC1364.

66. Morrow DA, Braunwald E, Bonaca MP, et al. Vorapaxar in the

secondary prevention of atherothrombotic events. N Engl J

Med. 2012;366:1404e1413.

67. David AM, Benjamin MS, Keith AAF, et al. Evaluation of a

novel antiplatelet agent for secondary prevention in patients

with a history of atherosclerotic disease: design and rationale

for the thrombin-receptor antagonist in secondary

prevention of atherothrombotic ischemic events (TRA 2 P)TIMI 50 trial. Am Heart J. 2009;158:335e341.e3.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る