リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sulfur depletion induces autophagy through Ecl1 family genes in fission yeast」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sulfur depletion induces autophagy through Ecl1 family genes in fission yeast

Shimasaki, Takafumi Okamoto, Keisuke Ohtsuka, Hokuto Aiba, Hirofumi 名古屋大学

2020.12

概要

Autophagy is an intracellular degradation system widely conserved among various species. Autophagy is induced by the depletion of various nutrients, and this degradation mechanism is essential for adaptation to such conditions. In this study, we demonstrated that sulfur depletion induces autophagy in the fission yeast Schizosaccharomyces pombe. Based on the finding that autophagy induced by sulfur depletion was completely abolished in a mutant in which the ecl1, ecl2 and ecl3 genes were deleted (Δecls), we report that these three genes are essential for the induction of autophagy by sulfur depletion. Furthermore, autophagy‐defective mutant cells exhibited poor growth and short lifespan (compared with wild‐type cells) under the sulfur‐depleted condition. These results indicated that the mechanism of autophagy is necessary for the appropriate adaptation to sulfur depletion.

この論文で使われている画像

参考文献

Fabrizio, P., & Longo. V. D. (2003). The chronological life span of Saccharomyces

cerevisiae. Aging Cell. 2, 73–81. https://doi:10.1046/j.1474-9728.2003.00033.x

Fabrizio, P., Battistella, L., Vardavas, R., Gattazzo, C., Liou, L. L., Diaspro, A., ... Longo,

V. D. (2004). Superoxide is a mediator of an altruistic aging program in Saccharomyces

cerevisiae. J Cell Biol. 166, 1055–1067. https://doi:10.1083/jcb.200404002

10

Hibi, T., Ohtsuka, H., Shimasaki, T., Inui, S., Shibuya, M., Tatsukawa, H., ... Aiba, H.

11

(2018). Tschimganine and its derivatives extend the chronological life span of yeast via

12

activation of the Sty1 pathway [published online ahead of print, 2018 Jun 14]. Genes

13

Cells. https://doi:10.1111/gtc.12604.

14

15

Iwata, A., Riley, B. E., Johnston, J. A., & Kopito, R. R. (2005). HDAC6 and microtubules

16

are required for autophagic degradation of aggregated huntingtin. J Biol Chem. 280,

17

40282–40292. https://doi:10.1074/jbc.M508786200

18

19

Jin, M., He, D., Backues, S. K., Freeberg, M. A., Liu, X., Kim, J. K., & Klionsky, D. J.

20

(2014). Transcriptional regulation by Pho23 modulates the frequency of autophagosome

21

formation. Curr Biol. 24, 1314-1322. https://doi:10.1016/j.cub.2014.04.048

22

23

Kohda, T. A., Tanaka, K., Konomi, M., Sato, M., Osumi, M., & Yamamoto, M. (2007).

24

Fission yeast autophagy induced by nitrogen starvation generates a nitrogen source that

25

drives adaptation processes. Genes Cells. 12, 155–170.

26

https://doi:10.1111/j.1365-2443.2007.01041.x

27

28

Kraft, C., Deplazes, A., Sohrmann, M., & Peter, M. (2008). Mature ribosomes are

29

selectively degraded upon starvation by an autophagy pathway requiring the

30

Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol. 10, 602–610.

31

https://doi:10.1038/ncb1723

32

Mizushima, N., Yoshimori, T., & Ohsumi, Y. (2011). The role of Atg proteins in

autophagosome formation. Annu Rev Cell Dev Biol. 27, 107–132.

https://doi:10.1146/annurev-cellbio-092910-154005

Mukaiyama, H., Kajiwara, S., Hosomi, A., Giga-Hama, Y., Tanaka, N., Nakamura, T., &

Takegawa, K. (2009). Autophagy-deficient Schizosaccharomyces pombe mutants

undergo partial sporulation during nitrogen starvation. Microbiology. 155, 3816–3826.

https://doi:10.1099/mic.0.034389-0

10

Mukaiyama, H., Nakase, M., Nakamura, T., Kakinuma, Y., & Takegawa, K. (2010).

11

Autophagy in the fission yeast Schizosaccharomyces pombe. FEBS Lett. 584, 1327–1334.

12

https://doi:10.1016/j.febslet.2009.12.037

13

14

Nakatogawa, H., Ichimura, Y., & Ohsumi, Y. (2007). Atg8, a ubiquitin-like protein

15

required for autophagosome formation, mediates membrane tethering and

16

hemifusion. Cell. 130, 165–178. https://doi:10.1016/j.cell.2007.05.021

17

18

Ohsumi, Y. (2014). Historical landmarks of autophagy research. Cell Res. 24, 9–23.

19

https://doi:10.1038/cr.2013.169

20

21

Ohtsuka, H., Mita, S., Ogawa, Y., Azuma, K., Ito, H., & Aiba, H. (2008). A novel gene,

22

ecl1+, extends the chronological lifespan in fission yeast. FEMS Yeast Res. 8, 520–530.

23

https://doi:10.1111/j.1567-1364.2008.00379.x

24

25

Ohtsuka, H., Ogawa, Y., Mizuno, H., Mita, S., & Aiba, H. (2009). Identification of Ecl

26

family genes that extend chronological lifespan in fission yeast. Biosci Biotechnol

27

Biochem. 73, 885–889. https://doi:10.1271/bbb.80804

28

29

Ohtsuka, H., Takinami, M., Shimasaki, T., Hibi, T., Murakami, H., & Aiba, H. (2017).

30

Sulfur restriction extends fission yeast chronological lifespan through Ecl1 family genes

31

by downregulation of ribosome. Mol Microbiol. 105, 84–97.

32

https://doi:10.1111/mmi.13686

33

Ohtsuka, H., Kato, T., Sato, T., Shimasaki, T., Kojima, T., & Aiba, H. (2019). Leucine

depletion extends the lifespans of leucine-auxotrophic fission yeast by inducing Ecl1

family genes via the transcription factor Fil1. Mol Genet Genomics. 294, 1499–1509.

https://doi:10.1007/s00438-019-01592-6

Pandey, U. B., Nie, Z., Batlevi, Y., McCray, B. A., Ritson, G. P., Nedelsky, N. B., ...

Taylor, J. P. (2007). HDAC6 rescues neurodegeneration and provides an essential link

between autophagy and the UPS. Nature. 447, 859–863. https://doi:10.1038/nature05853

10

Shintani, T., & Klionsky, D. J. (2004). Cargo proteins facilitate the formation of transport

11

vesicles in the cytoplasm to vacuole targeting pathway. J Biol Chem. 279, 29889–29894.

12

https://doi:10.1074/jbc.M404399200

13

14

Takeshige, K., Baba, M., Tsuboi, S., Noda, T., & Ohsumi, Y. (1992). Autophagy in yeast

15

demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell

16

Biol. 119, 301–311. https://doi:10.1083/jcb.119.2.301

17

18

Xie, Z., & Klionsky, D. J. (2007). Autophagosome formation: core machinery and

19

adaptations. Nat Cell Biol. 9, 1102–1109. https://doi:10.1038/ncb1007-1102

20

21

Xie, Z., Nair, U., & Klionsky, D. J.. (2008). Atg8 controls phagophore expansion during

22

autophagosome formation. Mol Biol Cell. 19, 3290–3298.

23

https://doi:10.1091/mbc.e07-12-1292

24

25

26

Figure legends

Figure 1

A: Wild-type strain (JY333) carrying the pTN54-Atg8 plasmid was cultured in EMM to

OD600nm = 0.5, and then the cells were washed and transferred into sulfur-free EMM.

Thereafter, the cells were harvested at each time point, and Western blot analysis was

performed. The amount of α-tubulin was used as loading control. B: JY333 (WT) and

Δatg1 strains harboring pTN54-Atg8 were cultured in EMM to OD600nm = 0.5, and then

the cells were washed and transferred into EMM (control) and sulfur-free EMM (-S),

10

respectively. Cells were harvested at each time point, and Western blot analysis was

11

performed. C: Wild-type strain (JY333) carrying the pTN54-Atg8 plasmid was cultured

12

in EMM to OD600nm = 0.5, and then the cells were washed and transferred into

13

sulfur-free EMM. After 24 h, cells were subjected to fluorescence microscopy

14

observation. FM4-64 was employed for vacuole staining.

15

16

Figure 2

17

A: JY333 (WT) and Δecl1.2.3 (Δecls) strains were cultured in EMM to OD600nm = 0.5,

18

and then the cells were washed and transferred into EMM (control), sulfur-free (-S), and

19

nitrogen-free (-N) EMM, respectively. Cells were harvested at each time point, and then

20

Western blot analysis was performed. B: JY333 (WT) and Δecl1.2.3 (Δecls) strains

21

were cultured in EMM to OD600nm = 0.5, and then the cells were washed and transferred

22

into EMM and sulfur-free EMM, respectively. Cells were harvested at each time point,

23

and then real-time PCR analysis was performed. The expression of cdc2+ was used as

24

the quantitative control. The results are represented as the mean of three independent

25

experiments with standard deviation.

26

27

Figure 3

28

JY333 (WT) and Δatg1 strains were cultured in SD medium to OD600nm = 1.5, and then

29

the cells were washed and transferred into SD and sulfur-free SD medium, respectively.

30

A: Growth of each strain was monitored at each time point. B: Viability of each strain

31

was measured at each time point. The results are represented as the mean of three

32

independent experiments with standard deviation.

33

10

− S (hour)

12

24

36

48

GFP-Atg8

GFP

α-Tubulin

WT

(hour)

Δatg1

Control

−S

12

12

Control

12

−S

12

GFP-Atg8

GFP

GFP-Atg8

FM4-64

merge

−S

10 μm

Fig.1

10 μm

10 μm

WT

Control

(hour)

12

Δecls

−N

−S

Control

−N

−S

12

12

12

12

12

GFP-Atg8

GFP

−S, 3 hour

−S, 3hour 3

WT

WT

atg4+

−S, 3 hour

−S, 3hour 2

WT

WT

atg13+

−S, 3 hour

−S, 3hour 2

Fig.2

WT

WT

Δecls

Δecls

atg3+

0hour

0 hour

Time0 Control, 3 hour

Control, 3hour −S, 3 hour

−S, 3hour 4

WT

WT

atg8+

Δecls

Δecls

0hour

0hour

0 hour

Time0 Control, 3 hour

Control, 3hour −S, 3 hour

−S, 3hour 4

Δecls

Δecls

0 hour

0hour

Time0 Control, 3 hour

Control, 3hour 5

Δecls

Δecls

0 hour

0hour

Time0 Control, 3 hour

Control, 3hour 3

Relative amount of mRNA

Control, 3 hour

Control, 3hour 4

Relative amount of mRNA

0 hour

Time0 Relative amount of mRNA

atg1+

Relative amount of mRNA

Relative amount of mRNA

Relative amount of mRNA

WT

WT

atg20+

Δecls

Δecls

0hour

0 hour

Time0 Control, 3 hour

Control, 3hour −S, 3 hour

−S, 3hour 3

WT

WT

Δecls

Δecls

OD600nm

10

WT, Control WT, −S Δatg1, Control Δatg1,

Δatg1, −S Δatg1,

50

100

150

200

250

Time (hour)

300

350

400

450

108

100000000

107

10000000

Viability

106

1000000

105

100000

10

10000

WT, Control WT, −S Δatg1, Control Δatg1,

Δatg1, −S Δatg1,

10

1000

10100

Fig.3

50

100

150

200

250

Time (hour)

300

350

400

450

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る