リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Bmal1 Regulates Prostate Growth via Cell-Cycle Modulation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Bmal1 Regulates Prostate Growth via Cell-Cycle Modulation

Ueda, Masakatsu 京都大学 DOI:10.14989/doctor.r13572

2023.09.25

概要

The circadian clock generates the cyclical day–night somatic rhythm and modulates
diverse physiological processes, including organ growth. The central clock is localized in the
suprachiasmatic nucleus (SCN), from where it controls peripheral clocks located in organs,
tissues, and even cells [1]. The circadian master rhythm is generated by transcription–
translation feedback loops, consisting of a conserved family of clock genes, with Bmal1
playing a particularly critical role in reproductive endocrinology [2].
The prostate is a male reproductive gland responsible for 30–35% of semen composition with a pass through for the urethra. Prostate weights are usually less than 20 g
in adults, while the exact size varies by individual [3]. Mid-to-late life mechanisms of
enlargement mainly occur through hormones such as testosterone and estrogen [4] but also
through inflammation [5], oxidative stress [6] and insulin resistance [7]. However, any associations between clock genes and prostatic growth via the modulation of these causative
processes are largely unknown. To investigate such a role for peripheral clock genes in
prostatic hyperplasia, the isolation of mechanistic pathways through targeted deletions has
become a standard process for molecular studies. ...

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

Zhang, S.; Dai, M.; Wang, X.; Jiang, S.H.; Hu, L.P.; Zhang, X.L.; Zang, Z.G. Signaling entrains the peripheral circadian clock. Cell

Signal. 2020, 69, 109443. [CrossRef] [PubMed]

Jiang, Y.; Li, S.; Xu, W.; Ying, J.; Qu, Y.; Jiang, X.; Zhang, A.; Yue, Y.; Zhou, R.; Ruan, T.; et al. Critical Roles of the Circadian

Transcription Factor BMAL1 in Reproductive Endocrinology and Fertility. Front. Endocrinol. 2022, 13, 818272. [CrossRef]

[PubMed]

Zhang, S.J.; Qian, H.N.; Zhao, Y.; Sun, K.; Wang, H.Q.; Liang, G.Q.; Li, F.H.; Li, Z. Relationship between age and prostate size.

Asian J. Androl. 2013, 15, 116–120. [CrossRef] [PubMed]

Roehrborn, C.G. Pathology of benign prostatic hyperplasia. Int. J. Impot. Res. 2008, 20, S11–S18. [CrossRef] [PubMed]

Elkahwaji, J.E. The role of inflammatory mediators in the development of prostatic hyperplasia and prostate cancer. Res. Rep.

Urol. 2012, 5, 1. [CrossRef] [PubMed]

Vital, P.; Castro, P.; Ittmann, M. Oxidative stress promotes benign prostatic hyperplasia. Prostate 2016, 76, 58–67. [CrossRef]

[PubMed]

Wang, Z.; Olumi, A.F. Diabetes, growth hormone-insulin-like growth factor pathways and association to benign prostatic

hyperplasia. Differentiation 2011, 82, 261–271. [CrossRef]

Alvarez, J.D.; Hansen, A.; Ord, T.; Bebas, P.; Chappell, P.E.; Giebultowicz, J.M.; Williams, C.; Moss, S.; Sehgal, A. The circadian

clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J. Biol. Rhythm. 2008, 23, 26–36.

[CrossRef]

Int. J. Mol. Sci. 2022, 23, 11272

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

10 of 10

Yang, L.; Ma, T.; Zhao, L.; Jiang, H.; Zhang, J.; Liu, D.; Zhang, L.; Wang, X.; Pan, T.; Zhang, H.; et al. Circadian regulation of

apolipoprotein gene expression affects testosterone production in mouse testis. Theriogenology 2021, 174, 9–19. [CrossRef]

Kondratov, R.V.; Kondratova, A.A.; Gorbacheva, V.Y.; Vykhovanets, O.V.; Antoch, M.P. Early aging and age-related pathologies in

mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 2006, 20, 1868–1873. [CrossRef]

Bebas, P.; Goodall, C.P.; Majewska, M.; Neumann, A.; Giebultowicz, J.M.; Chappell, P.E. Circadian clock and output genes are

rhythmically expressed in extratesticular ducts and accessory organs of mice. FASEB J. 2009, 23, 523–533. [CrossRef] [PubMed]

Birbach, A. Use of PB-Cre4 mice for mosaic gene deletion. PLoS ONE 2013, 8, e53501. [CrossRef] [PubMed]

Shimba, S.; Ogawa, T.; Hitosugi, S.; Ichihashi, Y.; Nakadaira, Y.; Kobayashi, M.; Tezuka, M.; Kosuge, Y.; Ishige, K.; Ito, Y.; et al.

Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS

ONE 2011, 6, e25231. [CrossRef] [PubMed]

Okada, Y.; Sonoshita, M.; Kakizaki, F.; Aoyama, N.; Itatani, Y.; Uegaki, M.; Sakamoto, H.; Kobayashi, T.; Inoue, T.; Kamba, T.; et al.

Amino-terminal enhancer of split gene AES encodes a tumor and metastasis suppressor of prostate cancer. Cancer Sci. 2017, 108,

744–752. [CrossRef]

Gréchez-Cassiau, A.; Rayet, B.; Guillaumond, F.; Teboul, M.; Delaunay, F. The circadian clock component BMAL1 is a critical

regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J. Biol. Chem. 2008, 283, 4535–4542. [CrossRef]

Harper, J.W.; Adami, G.R.; Keyomarsi, N.W.K.; Elledge, S.J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1

cyclin-dependent kinases. Cell 1993, 75, 805–816. [CrossRef]

Shidaifat, F.; Canatan, H.; Kulp, S.K.; Sugimoto, Y.; Zhang, Y.; Brueggemeier, R.W.; Somers, W.J.; Chang, W.Y.; Wang, H.C.; Lin,

Y.C. Gossypol arrests human benign prostatic hyperplastic cell growth at G0/G1 phase of the cell cycle. Anticancer Res. 1997, 17,

1003–1009.

Pannek, J.; Berges, R.R.; Sauvageot, J.; Lecksell, K.L.; Epstein, J.I.; Partin, A.W. Cell turnover in human seminal vesicles and the

prostate: An immunohistochemical study. Prostate Cancer Prostatic Dis. 1999, 2, 200–203. [CrossRef]

Cao, Q.; Gery, S.; Dashti, A.; Yin, D.; Zhou, Y.; Gu, J.; Koeffler, H.P. A role for the clock gene per1 in prostate cancer. Cancer Res.

2009, 69, 7619–7625. [CrossRef]

Kaur, P.; Mohamed, N.E.; Archer, M.; Figueiro, M.G.; Kyprianou, N. Impact of Circadian Rhythms on the Development and

Clinical Management of Genitourinary Cancers. Front. Oncol. 2022, 12, 759153. [CrossRef]

Jin, C.; McKeehan, K.; Wang, F. Transgenic mouse with high Cre recombinase activity in all prostate lobes, seminal vesicle, and

ductus deferens. Prostate 2003, 57, 160–164. [CrossRef] [PubMed]

Ohmiya, H.; Vitezic, M.; Frith, M.C.; Itoh, M.; Carninci, P.; Forrest, A.R.; Hayashizaki, Y.; Lassmann, T.; FANTOM Consortium.

RECLU: A pipeline to discover reproducible transcriptional start sites and their alternative regulation using capped analysis of

gene expression (CAGE). BMC Genom. 2014, 15, 269. [CrossRef] [PubMed]

Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a

biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [CrossRef] [PubMed]

Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013, 48,

452–458. [CrossRef]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る