リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Intricate Reaction Pathways on CH3NH3PbI3 Photocatalysts in Aqueous Solution Unraveled by Single-Particle Spectroscopy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Intricate Reaction Pathways on CH3NH3PbI3 Photocatalysts in Aqueous Solution Unraveled by Single-Particle Spectroscopy

Takeuchi, Aito Kumabe, Yoshitaka Tachikawa, Takashi 神戸大学

2023.03.16

概要

Organic–inorganic hybrid perovskites such as MAPbI₃ (MA⁺ = CH₃NH₃⁺) have emerged as promising materials for solar cells and light-emitting devices. Despite their poor stability against moisture, perovskites work as hydrogen-producing photocatalysts or photosensitizers in perovskite-saturated aqueous solutions. However, the fundamental understanding of how chemical species or support materials in the solution affect the dynamics of the photogenerated charges in perovskites is still insufficient. In this study, we investigated the photoluminescence (PL) properties of MAPbI₃ nanoparticles in aqueous media at the single-particle level. A remarkable PL blinking phenomenon, along with significant decreases in the PL intensity and lifetime compared to those in ambient air, suggested temporal fluctuations in the trapping rates of photogenerated holes by chemical species (I– and H₃PO₂) in the solution. Moreover, electron transfer from the excited MAPbI₃ to Pt-modified TiO₂ proceeds in a concerted fashion for photocatalytic hydrogen evolution under the dynamic solid–solution equilibrium condition.

この論文で使われている画像

参考文献

(1)

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as

Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

(2)

Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland,

S.; Rothenberger, A.; Katsiev, K.; Losovyj, Y.; Zhang, X.; Dowben, P. A.; Mohammed, O.

F.; Sargent, E. H.; Bakr, O. M. Low Trap-State Density and Long Carrier Diffusion in

Organolead Trihalide Perovskite Single Crystals. Science 2015, 347, 519–522.

(3)

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.;

Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding 1

Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341–344.

(4)

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid

Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012,

338, 643–647.

17

(5)

Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price,

M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.;

Friend, R. H. Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat.

Nanotechnol. 2014, 9, 687–692.

(6)

Huang, H.; Pradhan, B.; Hofkens, J.; Roeffaers, M. B. J.; Steele, J. A. Solar-Driven Metal

Halide Perovskite Photocatalysis: Design, Stability, and Performance. ACS Energy Lett.

2020, 5, 1107–1123.

(7)

Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y.

A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2

Reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.

(8)

Yuan, Y.; Zhu, H.; Hills‐Kimball, K.; Cai, T.; Shi, W.; Wei, Z.; Yang, H.; Candler, Y.;

Wang, P.; He, J.; Chen, O. Stereoselective C−C Oxidative Coupling Reactions

Photocatalyzed by Zwitterionic Ligand Capped CsPbBr3 Perovskite Quantum Dots. Angew.

Chem. Int. Ed. 2020, 59, 22563–22569.

(9)

Huang, H.; Yuan, H.; Janssen, K. P. F.; Solís-Fernández, G.; Wang, Y.; Tan, C. Y. X.;

Jonckheere, D.; Debroye, E.; Long, J.; Hendrix, J.; Hofkens, J.; Steele, J. A.; Roeffaers, M.

B. J. Efficient and Selective Photocatalytic Oxidation of Benzylic Alcohols with Hybrid

Organic–Inorganic Perovskite Materials. ACS Energy Lett. 2018, 3, 755–759.

(10) De Wolf, S.; Holovsky, J.; Moon, S.-J.; Loper, P.; Niesen, B.; Ledinsky, M.; Haug, F.-J.;

Yum, J.-H.; Ballif, C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge

and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 2014, 5, 1035–1039.

18

(11) Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng,

Y.-B. Degradation Observations of Encapsulated Planar CH3NH3PbI3 Perovskite Solar

Cells at High Temperatures and Humidity. J. Mater. Chem. A 2015, 3, 8139–8147.

(12) Park, S.; Chang, W. J.; Lee, C. W.; Park, S.; Ahn, H.-Y.; Nam, K. T. Photocatalytic

Hydrogen Generation from Hydriodic Acid Using Methylammonium Lead Iodide in

Dynamic Equilibrium with Aqueous Solution. Nat. Energy 2017, 2, 16185.

(13) Wang, X.; Wang, H.; Zhang, H.; Yu, W.; Wang, X.; Zhao, Y.; Zong, X.; Li, C. Dynamic

Interaction between Methylammonium Lead Iodide and TiO2 Nanocrystals Leads to

Enhanced Photocatalytic H2 Evolution from HI Splitting. ACS Energy Lett. 2018, 3, 1159–

1164.

(14) Wu, Y.; Wang, P.; Zhu, X.; Zhang, Q.; Wang, Z.; Liu, Y.; Zou, G.; Dai, Y.; Whangbo, M.H.; Huang, B. Composite of CH3NH3PbI3 with Reduced Graphene Oxide as a Highly

Efficient and Stable Visible-Light Photocatalyst for Hydrogen Evolution in Aqueous HI

Solution. Adv. Mater. 2018, 30, 1704342.

(15) Zhao, Z.; Wu, J.; Zheng, Y.-Z.; Li, N.; Li, X.; Tao, X. Ni3C-Decorated MAPbI3 as VisibleLight Photocatalyst for H2 Evolution from HI Splitting. ACS Catal. 2019, 9, 8144–8152.

(16) Li, R.; Li, X.; Wu, J.; Lv, X.; Zheng, Y.-Z.; Zhao, Z.; Ding, X.; Tao, X.; Chen, J.-F. FewLayer Black Phosphorus-on-MAPbI3 for Superb Visible-Light Photocatalytic Hydrogen

Evolution from HI Splitting. Appl. Catal. B Environ. 2019, 259, 118075.

(17) Tachikawa, T.; Fujitsuka, M.; Majima, T. Mechanistic Insight into the TiO2 Photocatalytic

Reactions: Design of New Photocatalysts. J. Phys. Chem. C 2007, 111, 5259–5275.

19

(18) Tachikawa, T.; Karimata, I.; Kobori, Y. Surface Charge Trapping in Organolead Halide

Perovskites Explored by Single-Particle Photoluminescence Imaging. J. Phys. Chem. Lett.

2015, 6, 3195–3201.

(19) Park, Y.-S.; Guo, S.; Makarov, N. S.; Klimov, V. I. Room Temperature Single-Photon

Emission from Individual Perovskite Quantum Dots. ACS Nano 2015, 9, 10386–10393.

(20) Karimata, I.; Tachikawa, T. In Situ Exploration of the Structural Transition during

Morphology‐ and Efficiency‐Conserving Halide Exchange on a Single Perovskite

Nanocrystal. Angew. Chem. Int. Ed. 2021, 60, 2548–2553.

(21) D’Innocenzo, V.; Grancini, G.; Alcocer, M. J. P.; Kandada, A. R. S.; Stranks, S. D.; Lee,

M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A. Excitons versus Free Charges in OrganoLead Tri-Halide Perovskites. Nat. Commun. 2014, 5, 4586.

(22) Herz, L. M. How Lattice Dynamics Moderate the Electronic Properties of Metal-Halide

Perovskites. J. Phys. Chem. Lett. 2018, 9, 6853–6863.

(23) Jang, D. M.; Park, K.; Kim, D. H.; Park, J.; Shojaei, F.; Kang, H. S.; Ahn, J. P.; Lee, J. W.;

Song, J. K. Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite

Colloidal Nanocrystals for Full-Range Band Gap Tuning. Nano Lett. 2015, 15, 5191–5199.

(24) Patterson, A. L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev.

1939, 56, 978–982.

(25) Jao, M.-H.; Lu, C.-F.; Tai, P.-Y.; Su, W.-F. Precise Facet Engineering of Perovskite Single

Crystals by Ligand-Mediated Strategy. Cryst. Growth Des. 2017, 17, 5945–5952.

(26) Zhang, J.; Wang, K.; Yao, Q.; Yuan, Y.; Ding, J.; Zhang, W.; Sun, H.; Shang, C.; Li, C.;

Zhou, T.; Pang, S. Carrier Diffusion and Recombination Anisotropy in the MAPbI3 Single

Crystal. ACS Appl. Mater. Interfaces 2021, 13, 29827–29834.

20

(27) Yin, J.; Cortecchia, D.; Krishna, A.; Chen, S.; Mathews, N.; Grimsdale, A. C.; Soci, C.

Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films. J.

Phys. Chem. Lett. 2015, 6, 1396–1402.

(28) Leguy, A. M. A.; Hu, Y.; Campoy-Quiles, M.; Alonso, M. I.; Weber, O. J.; Azarhoosh, P.;

van Schilfgaarde, M.; Weller, M. T.; Bein, T.; Nelson, J.; Docampo, P.; Barnes, P. R. F.

Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells. Chem.

Mater. 2015, 27, 3397–3407.

(29) Askar, A. M.; Bernard, G. M.; Wiltshire, B.; Shankar, K.; Michaelis, V. K. Multinuclear

Magnetic Resonance Tracking of Hydro, Thermal, and Hydrothermal Decomposition of

CH3NH3PbI3. J. Phys. Chem. C 2017, 121, 1013–1024.

(30) De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.;

Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly Dynamic Ligand Binding and Light

Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano 2016,

10, 2071–2081.

(31) Zhang, F.; Huang, S.; Wang, P.; Chen, X.; Zhao, S.; Dong, Y.; Zhong, H. Colloidal

Synthesis of Air-Stable CH3NH3PbI3 Quantum Dots by Gaining Chemical Insight into the

Solvent Effects. Chem. Mater. 2017, 29, 3793–3799.

(32) Li, X.; Li, H.; Bi, W.; Song, Y.; Ge, C.; Wang, A.; Wang, Z.; Hao, M.; Kang, Y.; Yang, Y.;

Dong, Q. Hydration Intermediate Phase Regulated In‐Plane and Out‐Plane Epitaxy Growth

of Oriented Nano‐Array Structures on Perovskite Single Crystals. Small 2022, 18, 2107915.

(33) Grancini, G.; D’Innocenzo, V.; Dohner, E. R.; Martino, N.; Srimath Kandada, A. R.;

Mosconi, E.; De Angelis, F.; Karunadasa, H. I.; Hoke, E. T.; Petrozza, A. CH3NH3PbI3

21

Perovskite Single Crystals: Surface Photophysics and Their Interaction with the

Environment. Chem. Sci. 2015, 6, 7305–7310.

(34) Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T.

D.; Brus, L. E. Fluorescence Intermittency in Single Cadmium Selenide Nanocrystals.

Nature 1996, 383, 802–804.

(35) Wen, X.; Ho-Baillie, A.; Huang, S.; Sheng, R.; Chen, S.; Ko, H.; Green, M. A. Mobile

Charge-Induced Fluorescence Intermittency in Methylammonium Lead Bromide

Perovskite. Nano Lett. 2015, 15, 4644–4649.

(36) Tian, Y.; Merdasa, A.; Peter, M.; Abdellah, M.; Zheng, K.; Ponseca, C. S.; Pullerits, T.;

Yartsev, A.; Sundström, V.; Scheblykin, I. G. Giant Photoluminescence Blinking of

Perovskite Nanocrystals Reveals Single-Trap Control of Luminescence. Nano Lett. 2015,

15, 1603–1608.

(37) Gerhard, M.; Louis, B.; Camacho, R.; Merdasa, A.; Li, J.; Kiligaridis, A.; Dobrovolsky, A.;

Hofkens, J.; Scheblykin, I. G. Microscopic Insight into Non-Radiative Decay in Perovskite

Semiconductors from Temperature-Dependent Luminescence Blinking. Nat. Commun.

2019, 10, 1698.

(38) Chouhan, L.; Ito, S.; Thomas, E. M.; Takano, Y.; Ghimire, S.; Miyasaka, H.; Biju, V. RealTime Blinking Suppression of Perovskite Quantum Dots by Halide Vacancy Filling. ACS

Nano 2021, 15, 2831–2838.

(39) Li, B.; Huang, H.; Zhang, G.; Yang, C.; Guo, W.; Chen, R.; Qin, C.; Gao, Y.; Biju, V. P.;

Rogach, A. L.; Xiao, L.; Jia, S. Excitons and Biexciton Dynamics in Single CsPbBr3

Perovskite Quantum Dots. J. Phys. Chem. Lett. 2018, 9, 6934–6940.

22

(40) Yuan, G.; Ritchie, C.; Ritter, M.; Murphy, S.; Gómez, D. E.; Mulvaney, P. The Degradation

and Blinking of Single CsPbI3 Perovskite Quantum Dots. J. Phys. Chem. C 2018, 122,

13407–13415.

(41) Wang, X.; Qu, L.; Zhang, J.; Peng, X.; Xiao, M. Surface-Related Emission in Highly

Luminescent CdSe Quantum Dots. Nano Lett. 2003, 3, 1103–1106.

(42) Hu, L.; Feng, M.; Wang, X.; Liu, S.; Wu, J.; Yan, B.; Lu, W.; Wang, F.; Hu, J.-S.; Xue, D.J. Solution-Processed Ge(II)-Based Chalcogenide Thin Films with Tunable Bandgaps for

Photovoltaics. Chem. Sci. 2022, 13, 5944–5950.

(43) Kimura, Y.; Karimata, I.; Kobori, Y.; Tachikawa, T. Mechanistic Insights into

Photochemical Reactions on CH3NH3PbBr3 Perovskite Nanoparticles from Single‐Particle

Photoluminescence Spectroscopy. ChemNanoMat 2019, 5, 340–345.

(44) Scheidt, R. A.; Kerns, E.; Kamat, P. V. Interfacial Charge Transfer between Excited

CsPbBr3 Nanocrystals and TiO2 : Charge Injection versus Photodegradation. J. Phys. Chem.

Lett. 2018, 9, 5962–5969.

(45) Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum,

T. C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

CH3NH3PbI3. Science 2013, 342, 344–347.

(46) Serpetzoglou, E.; Konidakis, I.; Kakavelakis, G.; Maksudov, T.; Kymakis, E.; Stratakis, E.

Improved Carrier Transport in Perovskite Solar Cells Probed by Femtosecond Transient

Absorption Spectroscopy. ACS Appl. Mater. Interfaces 2017, 9, 43910–43919.

(47) Zhu, Z.; Ma, J.; Wang, Z.; Mu, C.; Fan, Z.; Du, L.; Bai, Y.; Fan, L.; Yan, H.; Phillips, D.

L.; Yang, S. Efficiency Enhancement of Perovskite Solar Cells through Fast Electron

Extraction: The Role of Graphene Quantum Dots. J. Am. Chem. Soc. 2014, 136, 3760–3763.

23

(48) Stowell, C. A.; Korgel, B. A. Iridium Nanocrystal Synthesis and Surface CoatingDependent Catalytic Activity. Nano Lett. 2005, 5, 1203–1207.

(49) Zheng, Z.; Tachikawa, T.; Majima, T. Single-Particle Study of Pt-Modified Au Nanorods

for Plasmon-Enhanced Hydrogen Generation in Visible to Near-Infrared Region. J. Am.

Chem. Soc. 2014, 136, 6870–6873.

(50) DuBose, J. T.; Kamat, P. V. Efficacy of Perovskite Photocatalysis: Challenges to Overcome.

ACS Energy Lett. 2022, 7, 1994–2011.

(51) Dung, D.; Ramsden, J.; Grätzel, M. Dynamics of Interfacial Electron-Transfer Processes in

Colloidal Semiconductor Systems. J. Am. Chem. Soc. 1982, 104, 2977–2985.

(52) Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A.

Fast Oxygen Diffusion and Iodide Defects Mediate Oxygen-Induced Degradation of

Perovskite Solar Cells. Nat. Commun. 2017, 8, 15218.

(53) Peterson, J. J.; Nesbitt, D. J. Modified Power Law Behavior in Quantum Dot Blinking: A

Novel Role for Biexcitons and Auger Ionization. Nano Lett. 2009, 9, 338–345.

(54) Yuan, G.; Gómez, D. E.; Kirkwood, N.; Boldt, K.; Mulvaney, P. Two Mechanisms

Determine Quantum Dot Blinking. ACS Nano 2018, 12, 3397–3405.

(55) Xu, W.; Kong, J. S.; Yeh, Y.-T. E.; Chen, P. Single-Molecule Nanocatalysis Reveals

Heterogeneous Reaction Pathways and Catalytic Dynamics. Nat. Mater. 2008, 7, 992–996.

(56) Tachikawa, T.; Yamashita, S.; Majima, T. Evidence for Crystal-Face-Dependent TiO2

Photocatalysis from Single-Molecule Imaging and Kinetic Analysis. J. Am. Chem. Soc.

2011, 133, 7197–7204.

24

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る