リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Prickle2 and Igsf9b coordinately regulate the cytoarchitecture of the axon initial segment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Prickle2 and Igsf9b coordinately regulate the cytoarchitecture of the axon initial segment

Md. Imrul Hasan Chowdhury 名古屋大学

2020.11.10

概要

【Introduction】
  Autism spectrum disorder (ASD) and epilepsy frequently coexist. Both diseases share comorbid symptoms, such as altered electroencephalogram and imbalance of the ratio of excitatory and inhibitory activity. This clinical and physiological overlap leads us to speculate a common dysfunction in the modulation of neural network.
Prickle2 has been identified in genetic studies of ASD subjects with epilepsy. A chromosomal microdeletion encompassing Prickle2 is associated with ASD and epilepsy. A whole-genome exome study found genetic variations of Prickle2 in patients with these illnesses. These findings suggest that Prickle2 hypofunction is involved in the shared pathology of ASD and epilepsy. However, the pathological mechanism of Prickle2 remains uncertain.
 The present study was conducted to investigate the pathological mechanism of Prickle2 in neurological diseases. Knockdown studies demonstrated that Prickle2 and its partner, Igsf9b, are involved in positioning of the axon initial segment (AIS), where many ASD and epilepsy susceptibility proteins accumulate.

【Materials and Methods】
DNA constructs
 Full-length mouse Prickle2 cDNA (PK2-Full, amino acids (aa) 1-886) was amplified from a mouse cDNA library and subcloned into pEGFP-C1. To visualize cell morphology, the pBact-mRFP vector was employed. In the knockdown experiments, we used short hairpin RNA (shRNA) vectors for cell biological studies. The following sequences were used to downregulate Prickle2: 5’-ATGGACAGAATAAATGGAC-3’ for scramble, 5’- GCTGGAGAGAAGTTGCGAA-3’ for Prickle2, and 5’-GGACCCTACTTCACGGAGT-3’ for Prickle2#2. For the rescue experiment in Prickle2-knockdown neurons, we constructed an RNAi-resistant Prickle2 mutant (PK2rs) containing two mutations in the target sequence of the sh-PK2 RNAi vector.

Immunofluorescence study
 Hippocampal neurons were fixed with 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS) for 15 min and permeabilized with PBS containing 0.2% Triton X-100 for 10 min. For the immunofluorescence study of AnkG, we permeabilized the neurons with 0.2% Triton X-100 for 1 h, followed by blocking with normal serum. The fixed neurons were incubated overnight at 4 °C with primary antibodies, washed, and incubated for 1 h with secondary antibodies. Fluorescent images were taken with a laser-scanning confocal microscope.

【Results】
 The transfection of an RNAi vector encoding a short hairpin RNA targeting Prickle2 (sh- PK2) significantly suppressed expression of the Prickle2 transgene and endogenous Prickle2(Fig. 1a). The localization of Igsf9b was significantly different from Prickle2-knockdown neurons and control neurons transfected with sh-scramble (Fig. 1b, c). The impairment of Igsf9b localization in Prickle2-knockdown neurons was restored by the expression of RNAi- resistant Prickle2 mutant PK2rs (Fig. 1b and c). These results suggest that Prickle2 regulates the transport of Igsf9b to the neurites of hippocampal neurons.
 Prickle2 knockdown also caused AnkG to redistribute in different patterns (Fig. 2a and b). Almost all the control neurons (more than 90%) showed AnkG accumulation at the proximal part of axons (Fig. 2a and b; type 1 phenotype). In contrast, AnkG was absent from the proximal part of axons in approximately 60% of prickle2-knockdown neurons (Fig. 2a and b; type 2 phenotype). The minority (approximately 30%) of Prickle2-knockdown neurons showed a discontinuous and punctate distribution of AnkG along axonal processes (Fig. 2a and b; type 3 phenotype). The expression of PK2rs restored the defective localization of AnkG (seen in phenotypes 2 and 3) in the Prickle2-knockdown neurons (Fig. 2b).

【Discussion】
 In this study, we found that Prickle2 knockdown impaired the localization of AnkG and voltage-gated sodium channels, thereby affecting neural network activity. In wild-type neurons, the AIS scaffolding protein AnkyrinG (AnkG) and voltage-gated sodium channel alpha subunit (NaV) accumulate at the proximal part of axons to tune action potential. Prickle2 knockdown (PK2-KD) caused Igsf9b localization defect, resulting in the delocalization of AnkG and NaV (Fig.3). We attribute the dissociation of AIS cluster caused by the gene silencing against Prickle2 and Igsf9b to the lack of intra-axonal boundary. AIS dysregulation triggered by Prickle2 hypofunction affects the control of neuronal excitability. Thus, the molecular mechanism by which Prickle2 underlies AIS dysregulation provides a positive clue for understanding shared pathogenic signaling between ASD and epilepsy.

参考文献

Arimura, N., Kimura, T., Nakamuta, S., Taya, S., Funahashi, Y., Hattori, A., Shimada, A., Menager, C., Kawabata, S., Fujii, K., Iwamatsu, A., Segal, R.A., Fukuda, M., and Kaibuchi, K. 2009. Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Dev. Cell, 16: 675-686.

Ben-Shalom, R., Keeshen, C.M., Berrios, K.N., An, J.Y., Sanders, S.J., and Bender, K.J. 2017. Opposing Effects on NaV1.2 Function Underlie Differences Between SCN2A Variants Observed in Individuals With Autism Spectrum Disorder or Infantile Seizures. Biol. Psychiatry, 82: 224-232.

Bi, C., Wu, J., Jiang, T., Liu, Q., Cai, W., Yu, P., Cai, T., Zhao, M., Jiang, Y.H., and Sun, Z.S. 2012. Mutations of ANK3 identified by exome sequencing are associated with autism susceptibility. Hum. Mutat., 33: 1635-1638.

Buxbaum, J.D., Daly, M.J., Devlin, B., Lehner, T., Roeder, K., State, M.W., and Autism Sequencing, C. 2012. The autism sequencing consortium: large-scale, highthroughput sequencing in autism spectrum disorders. Neuron, 76: 1052-1056.

Ehaideb, S.N., Iyengar, A., Ueda, A., Iacobucci, G.J., Cranston, C., Bassuk, A.G., Gubb, D., Axelrod, J.D., Gunawardena, S., Wu, C.F., and Manak, J.R. 2014. prickle modulates microtubule polarity and axonal transport to ameliorate seizures in flies. Proc. Natl. Acad. Sci. U S A, 111: 11187-11192.

Einevoll, G.T., Kayser, C., Logothetis, N.K., and Panzeri, S. 2013. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci., 14: 770-785.

Galiano, M.R., Jha, S., Ho, T.S., Zhang, C., Ogawa, Y., Chang, K.J., Stankewich, M.C., Mohler, P.J., and Rasband, M.N. 2012. A distal axonal cytoskeleton forms an intraaxonal boundary that controls axon initial segment assembly. Cell, 149: 1125-1139.

Gubb, D., Green, C., Huen, D., Coulson, D., Johnson, G., Tree, D., Collier, S., and Roote, J. 1999. The balance between isoforms of the prickle LIM domain protein is critical for planar polarity in Drosophila imaginal discs. Genes Dev., 13: 2315-2327.

Hamada, M.S., Goethals, S., de Vries, S.I., Brette, R., and Kole, M.H. 2016. Covariation of axon initial segment location and dendritic tree normalizes the somatic action potential. Proc. Natl. Acad. Sci. U S A, 113: 14841-14846.

Heron, S.E., Crossland, K.M., Andermann, E., Phillips, H.A., Hall, A.J., Bleasel, A., Shevell, M., Mercho, S., Seni, M.H., Guiot, M.C., Mulley, J.C., Berkovic, S.F., and Scheffer, I.E. 2002. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet, 360: 851-852.

Hida, Y., Fukaya, M., Hagiwara, A., Deguchi-Tawarada, M., Yoshioka, T., Kitajima, I., Inoue, E., Watanabe, M., and Ohtsuka, T. 2011. Prickle2 is localized in the postsynaptic density and interacts with PSD-95 and NMDA receptors in the brain. J. Biochem., 149: 693-700.

Huang, C.Y. and Rasband, M.N. 2018. Axon initial segments: structure, function, and disease. Ann. N.Y. Acad. Sci., 1420: 46-61.

Iqbal, Z., Vandeweyer, G., van der Voet, M., Waryah, A.M., Zahoor, M.Y., Besseling, J.A., Roca, L.T., Vulto-van Silfhout, A.T., Nijhof, B., Kramer, J.M., Van der Aa, N., Ansar, M., Peeters, H., Helsmoortel, C., Gilissen, C., Vissers, L.E., Veltman, J.A., de Brouwer, A.P., Frank Kooy, R., Riazuddin, S., Schenck, A., van Bokhoven, H., and Rooms, L. 2013. Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and psychiatric disorders. Hum. Mol. Genet., 22: 1960-1970.

Kader, M.A., Satake, T., Yoshida, M., Hayashi, I., and Suzuki, A. 2017. Molecular basis of the microtubule-regulating activity of microtubule crosslinking factor 1. PLoS One, 12: e0182641.

Kiral, F.R., Kohrs, F.E., Jin, E.J., and Hiesinger, P.R. 2018. Rab GTPases and Membrane Trafficking in Neurodegeneration. Curr. Biol., 28: R471-R486.

Kloth, K., Denecke, J., Hempel, M., Johannsen, J., Strom, T.M., Kubisch, C., and Lessel, D. 2017. First de novo ANK3 nonsense mutation in a boy with intellectual disability, speech impairment and autistic features. Eur. J. Med. Genet., 60: 494-498.

Leterrier, C. 2018. The Axon Initial Segment: An Updated Viewpoint. J. Neurosci., 38: 2135-2145.

Liu, Y., Lee, J.W., and Ackerman, S.L. 2015. Mutations in the microtubule-associated protein 1A (Map1a) gene cause Purkinje cell degeneration. J. Neurosci., 35: 4587-4598.

Lopez, A.Y., Wang, X., Xu, M., Maheshwari, A., Curry, D., Lam, S., Adesina, A.M., Noebels, J.L., Sun, Q.Q., and Cooper, E.C. 2017. Ankyrin-G isoform imbalance and interneuronopathy link epilepsy and bipolar disorder. Mol. Psychiatry, 22: 1464-1472.

Lukmanji, S., Manji, S.A., Kadhim, S., Sauro, K.M., Wirrell, E.C., Kwon, C.S., and Jette, N. 2019. The co-occurrence of epilepsy and autism: A systematic review. Epilepsy Behav., 98: 238-248.

Mishra, A., Traut, M.H., Becker, L., Klopstock, T., Stein, V., and Klein, R. 2014. Genetic evidence for the adhesion protein IgSF9/Dasm1 to regulate inhibitory synapse development independent of its intracellular domain. J. Neurosci., 34: 4187-4199.

Nagai, T., Nakamuta, S., Kuroda, K., Nakauchi, S., Nishioka, T., Takano, T., Zhang, X., Tsuboi, D., Funahashi, Y., Nakano, T., Yoshimoto, J., Kobayashi, K., Uchigashima, M., Watanabe, M., Miura, M., Nishi, A., Kobayashi, K., Yamada, K., Amano, M., and Kaibuchi, K. 2016. Phosphoproteomics of the Dopamine Pathway Enables Discovery of Rap1 Activation as a Reward Signal In Vivo. Neuron, 89: 550-565.

Nagaoka, T., Ohashi, R., Inutsuka, A., Sakai, S., Fujisawa, N., Yokoyama, M., Huang, Y.H., Igarashi, M., and Kishi, M. 2014. The Wnt/planar cell polarity pathway component Vangl2 induces synapse formation through direct control of N-cadherin. Cell Rep., 6: 916-927.

Nagaoka, T., Tabuchi, K., and Kishi, M. 2015. PDZ interaction of Vangl2 links PSD-95 and Prickle2 but plays only a limited role in the synaptic localisation of Vangl2. Sci. Rep., 5: 12916.

Ng, E.L. and Tang, B.L. 2008. Rab GTPases and their roles in brain neurons and glia. Brain Res. Rev., 58: 236-246.

Nishioka, T., Nakayama, M., Amano, M., and Kaibuchi, K. 2012. Proteomic screening for Rho-kinase substrates by combining kinase and phosphatase inhibitors with 14-3-3zeta affinity chromatography. Cell Struct. Funct., 37: 39-48.

Noiges, R., Eichinger, R., Kutschera, W., Fischer, I., Nemeth, Z., Wiche, G., and Propst, F. 2002. Microtubule-associated protein 1A (MAP1A) and MAP1B: light chains determine distinct functional properties. J. Neurosci., 22: 2106-2114.

Ogiwara, I., Miyamoto, H., Tatsukawa, T., Yamagata, T., Nakayama, T., Atapour, N., Miura, E., Mazaki, E., Ernst, S.J., Cao, D., Ohtani, H., Itohara, S., Yanagawa, Y., Montal,

M., Yuzaki, M., Inoue, Y., Hensch, T.K., Noebels, J.L., and Yamakawa, K. 2018. Nav1.2 haplodeficiency in excitatory neurons causes absence-like seizures in mice. Commun. Biol., 1.

Okumura, A., Yamamoto, T., Miyajima, M., Shimojima, K., Kondo, S., Abe, S., Ikeno, M., and Shimizu, T. 2014. 3p interstitial deletion including PRICKLE2 in identical twins with autistic features. Pediatr. Neurol., 51: 730-733.

Satake, T., Yamashita, K., Hayashi, K., Miyatake, S., Tamura-Nakano, M., Doi, H., Furuta, Y., Shioi, G., Miura, E., Takeo, Y.H., Yoshida, K., Yahikozawa, H., Matsumoto, N., Yuzaki, M., and Suzuki, A. 2017. MTCL1 plays an essential role in maintaining Purkinje neuron axon initial segment. EMBO J., 36: 1227-1242.

Scalmani, P., Rusconi, R., Armatura, E., Zara, F., Avanzini, G., Franceschetti, S., and Mantegazza, M. 2006. Effects in neocortical neurons of mutations of the Na(v)1.2 Na+ channel causing benign familial neonatal-infantile seizures. J. Neurosci., 26: 10100-10109.

Schizophrenia Working Group of the Psychiatric Genomics, C. 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511: 421-427.

Sener, E.F., Canatan, H., and Ozkul, Y. 2016. Recent Advances in Autism Spectrum Disorders: Applications of Whole Exome Sequencing Technology. Psychiatr Investig., 13: 255-264.

Shaw, H.S., Cameron, S.A., Chang, W.T., and Rao, Y. 2019. The Conserved IgSF9 Protein Borderless Regulates Axonal Transport of Presynaptic Components and Color Vision in Drosophila. J. Neurosci., 39: 6817-6828.

Shi, L., Zhang, X., Golhar, R., Otieno, F.G., He, M., Hou, C., Kim, C., Keating, B., Lyon, G.J., Wang, K., and Hakonarson, H. 2013. Whole-genome sequencing in an autism multiplex family. Mol. Autism, 4: 8.

Shyn, S.I., Shi, J., Kraft, J.B., Potash, J.B., Knowles, J.A., Weissman, M.M., Garriock, H.A., Yokoyama, J.S., McGrath, P.J., Peters, E.J., Scheftner, W.A., Coryell, W., Lawson, W.B., Jancic, D., Gejman, P.V., Sanders, A.R., Holmans, P., Slager, S.L., Levinson, D.F., and Hamilton, S.P. 2011. Novel loci for major depression identified by genome-wide association study of Sequenced Treatment Alternatives to Relieve Depression and meta-analysis of three studies. Mol. Psychiatry, 16: 202-215.

Sowers, L.P., Loo, L., Wu, Y., Campbell, E., Ulrich, J.D., Wu, S., Paemka, L., Wassink, T., Meyer, K., Bing, X., El-Shanti, H., Usachev, Y.M., Ueno, N., Manak, J.R., Shepherd, A.J., Ferguson, P.J., Darbro, B.W., Richerson, G.B., Mohapatra, D.P., Wemmie, J.A., and Bassuk, A.G. 2013. Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction. Mol. Psychiatry, 18: 1077-1089.

Sugawara, T., Tsurubuchi, Y., Agarwala, K.L., Ito, M., Fukuma, G., Mazaki-Miyazaki, E., Nagafuji, H., Noda, M., Imoto, K., Wada, K., Mitsudome, A., Kaneko, S., Montal, M., Nagata, K., Hirose, S., and Yamakawa, K. 2001. A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc. Natl. Acad. Sci. U S A, 98: 6384-6389.

Tao, H., Manak, J.R., Sowers, L., Mei, X., Kiyonari, H., Abe, T., Dahdaleh, N.S., Yang, T., Wu, S., Chen, S., Fox, M.H., Gurnett, C., Montine, T., Bird, T., Shaffer, L.G., Rosenfeld, J.A., McConnell, J., Madan-Khetarpal, S., Berry-Kravis, E., Griesbach, H., Saneto, R.P., Scott, M.P., Antic, D., Reed, J., Boland, R., Ehaideb, S.N., El- Shanti, H., Mahajan, V.B., Ferguson, P.J., Axelrod, J.D., Lehesjoki, A.E., Fritzsch, B., Slusarski, D.C., Wemmie, J., Ueno, N., and Bassuk, A.G. 2011. Mutations in prickle orthologs cause seizures in flies, mice, and humans. Am. J. Hum. Genet., 88: 138-149.

Tatsukawa, T., Raveau, M., Ogiwara, I., Hattori, S., Miyamoto, H., Mazaki, E., Itohara, S., Miyakawa, T., Montal, M., and Yamakawa, K. 2019. Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety, sociability, memory flexibility and ampakine CX516 rescues their hyperactivity. Mol. Autism, 10: 15.

Taya, S., Shinoda, T., Tsuboi, D., Asaki, J., Nagai, K., Hikita, T., Kuroda, S., Kuroda, K., Shimizu, M., Hirotsune, S., Iwamatsu, A., and Kaibuchi, K. 2007. DISC1 regulates the transport of the NUDEL/LIS1/14-3-3epsilon complex through kinesin-1. J. Neurosci., 27: 15-26.

Tye, C., Runicles, A.K., Whitehouse, A.J.O., and Alvares, G.A. 2018. Characterizing the Interplay Between Autism Spectrum Disorder and Comorbid Medical Conditions: An Integrative Review. Front. Psychiatry, 9: 751.

Werneburg, N.W., Guicciardi, M.E., Bronk, S.F., and Gores, G.J. 2002. Tumor necrosis factor-alpha-associated lysosomal permeabilization is cathepsin B dependent. Am. J. Physiol. Gastrointest. Liver Physiol., 283: G947-956.

Woo, J., Kwon, S.K., Nam, J., Choi, S., Takahashi, H., Krueger, D., Park, J., Lee, Y., Bae, J.Y., Lee, D., Ko, J., Kim, H., Kim, M.H., Bae, Y.C., Chang, S., Craig, A.M., and Kim, E. 2013. The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development. J. Cell Biol., 201: 929-944.

Yamada, R. and Kuba, H. 2016. Structural and Functional Plasticity at the Axon Initial Segment. Front. Cell Neurosci., 10: 250.

Zhou, D., Lambert, S., Malen, P.L., Carpenter, S., Boland, L.M., and Bennett, V. 1998. AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J. Cell Biol., 143: 1295-1304.

参考文献をもっと見る