リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Glycan Cluster Shielding and Antibody Epitopes on Lassa Virus Envelop Protein」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Glycan Cluster Shielding and Antibody Epitopes on Lassa Virus Envelop Protein

Re, Suyong 大阪大学

2021.02.19

概要

An understanding of how an antiviral monoclonal antibody recognizes its target is vital for the development of neutralizing antibodies and vaccines. The extensive glycosylation of viral proteins almost certainly affects the antibody response, but the investigation of such effects is hampered by the huge range of structures and interactions of surface glycans through their inherent complexity and flexibility. Here, we built an atomistic model of a fully glycosylated envelope protein complex of the Lassa virus and performed molecular dynamics simulations to characterize the impact of surface glycans on the antibody response. The simulations attested to the variety of conformations and interactions of surface glycans. The results show that glycosylation nonuniformly shields the surface of the complex and only marginally affects protein dynamics. The glycans gather in distinct clusters through interaction with protein residues, and only a few regions are left accessible by an antibody. We successfully recovered known protein epitopes by integrating the simulation results with existing sequence- and structure-based epitope prediction methods. The results emphasize the rich structural environment of glycans and demonstrate that shielding is not merely envelopment by a uniform blanket of sugars. This work provides a molecular basis for integrating otherwise elusive structural properties of glycans into vaccine and neutralizing antibody developments.

参考文献

(1) Watanabe, Y.; Bowden, T. A.; Wilson, I. A.; Crispin, M. Exploitation of Glycosylation in Enveloped Virus Pathobiology. Biochim. Biophys. Acta - Gen. Subj. 2019, 1863, 1480–1497.

(2) World Health Organization. Lassa Fever Research and Development Roadmap. 2018, No. May, 1–18.

(3) Ibukun, F. I. Inter-Lineage Variation of Lassa Virus Glycoprotein Epitopes: A Challenge to Lassa Virus Vaccine Development. Viruses 2020, 12, 386.

(4) Crispin, M.; Zeltina, A.; Zitzmann, N.; Bowden, T. A. Native Functionality and Therapeutic Targeting of Arenaviral Glycoproteins. Curr. Opin. Virol. 2016, 18, 70–75.

(5) Hastie, K. M.; Cross, R. W.; Harkins, S. S.; Zandonatti, M. A.; Koval, A. P.; Heinrich, M. L.; Rowland, M. M.; Robinson, J. E.; Geisbert, T. W.; Garry, R. F. et al. Convergent Structures Illuminate Features for Germline Antibody Binding and Pan-Lassa Virus Neutralization. Cell 2019, 178, 1004-1015.e14.

(6) Hastie, K. M.; Igonet, S.; Sullivan, B. M.; Legrand, P.; Zandonatti, M. A.; Robinson, J. E.; Garry, R. F.; Rey, F. A.; Oldstone, M. B.; Saphire, E. O. Crystal Structure of the Prefusion Surface Glycoprotein of the Prototypic Arenavirus LCMV. Nat. Struct. Mol. Biol. 2016, 23, 513–521.

(7) Hastie, K. M.; Zandonatti, M. A.; Kleinfelter, L. M.; Heinrich, M. L.; Rowland, M. M.; Chandran, K.; Branco, L. M.; Robinson, J. E.; Garry, R. F.; Saphire, E. O. Structural Basis for Antibody-Mediated Neutralization of Lassa Virus. Science 2017, 356, 923–928.

(8) Li, S.; Sun, Z.; Pryce, R.; Parsy, M. L.; Fehling, S. K.; Schlie, K.; Siebert, C. A.; Garten, W.; Bowden, T. A.; Strecker, T. et al. Acidic PH-Induced Conformations and LAMP1 Binding of the Lassa Virus Glycoprotein Spike. PLoS Pathog. 2016, 12, e1005418.

(9) Zeltina, A.; Bowden, T. A. Human Antibody Pieces Together the Puzzle of the Trimeric Lassa Virus Surface Antigen. Nat. Struct. Mol. Biol. 2017, 24, 559–560.

(10) Jae, L. T.; Raaben, M.; Herbert, A. S.; Kuehne, A. I.; Wirchnianski, A. S.; Soh, T. K.; Stubbs, S. H.; Janssen, H.; Damme, M.; Saftig, P. et al. Lassa Virus Entry Requires a Trigger-Induced Receptor Switch. Science 2014, 344, 1506–1510.

(11) Torriani, G.; Galan-Navarro, C.; Kunz, S. Lassa Virus Cell Entry Reveals New Aspects of Virus-Host Cell Interaction. J. Virol. 2017, 91, 1–8.

(12) Watanabe, Y.; Raghwani, J.; Allen, J. D.; Seabright, G. E.; Li, S.; Moser, F.; Huiskonen, J. T.; Strecker, T.; Bowden, T. A.; Crispin, M. Structure of the Lassa Virus Glycan Shield Provides a Model for Immunological Resistance. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 7320–7325.

(13) Robinson, J. E.; Hastie, K. M.; Cross, R. W.; Yenni, R. E.; Elliott, D. H.; Rouelle, J. A.; Kannadka, C. B.; Smira, A. A.; Garry, C. E.; Bradley, B. T. et al. Most Neutralizing Human Monoclonal Antibodies Target Novel Epitopes Requiring Both Lassa Virus Glycoprotein Subunits. Nat. Commun. 2016, 7, 11544.

(14) Sommerstein, R.; Flatz, L.; Remy, M. M.; Malinge, P.; Magistrelli, G.; Fischer, N.; Sahin, M.; Bergthaler, A.; Igonet, S.; ter Meulen, J. et al. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection. PLoS Pathog. 2015, 11, e1005276.

(15) Sikora, M.; von Bülow, S.; Blanc, F. E. C.; Gecht, M.; Covino, R.; Hummer, G. Map of SARS-CoV-2 Spike Epitopes Not Shielded by Glycans. bioRxiv 2020.

(16) Casalino, L.; Gaieb, Z.; Goldsmith, J. A.; Hjorth, C. K.; Dommer, A. C.; Harbison, A. M.; Fogarty, C. A.; Barros, E. P.; Taylor, B. C.; Mclellan, J. S. et al. Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein. ACS Cent. Sci. 2020, 6, 1722–1734.

(17) Grant, O. C.; Montgomery, D.; Ito, K.; Woods, R. J. Analysis of the SARS-CoV-2 Spike Protein Glycan Shield Reveals Implications for Immune Recognition. Sci. Rep. 2020, 10, 1– 18.

(18) Watanabe, Y.; Berndsen, Z. T.; Raghwani, J.; Seabright, G. E.; Allen, J. D.; Pybus, O. G.; McLellan, J. S.; Wilson, I. A.; Bowden, T. A.; Ward, A. B. et al. Vulnerabilities in Coronavirus Glycan Shields despite Extensive Glycosylation. Nat. Commun. 2020, 11, 2688.

(19) Pritchard, L. K.; Spencer, D. I. R.; Royle, L.; Bonomelli, C.; Seabright, G. E.; Behrens, A. J.; Kulp, D. W.; Menis, S.; Krumm, S. A.; Dunlop, D. C. et al. Glycan Clustering Stabilizes the Mannose Patch of HIV-1 and Preserves Vulnerability to Broadly Neutralizing Antibodies. Nat. Commun. 2015, 6, 1–11.

(20) Behrens, A. J.; Vasiljevic, S.; Pritchard, L. K.; Harvey, D. J.; Andev, R. S.; Krumm, S. A.; Struwe, W. B.; Cupo, A.; Kumar, A.; Zitzmann, N. et al. Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. Cell Rep. 2016, 14, 2695–2706.

(21) Coss, K. P.; Vasiljevic, S.; Pritchard, L. K.; Krumm, S. A.; Glaze, M.; Madzorera, S.; Moore, P. L.; Crispin, M.; Doores, K. J. HIV-1 Glycan Density Drives the Persistence of the Mannose Patch within an Infected Individual. J. Virol. 2016, 90, 11132–11144.

(22) Seabright, G. E.; Cottrell, C. A.; van Gils, M. J.; D’addabbo, A.; Harvey, D. J.; Behrens, A. J.; Allen, J. D.; Watanabe, Y.; Maker, A.; Vasiljevic, S. et al. Networks of HIV-1 Envelope Glycans Maintain Antibody Epitopes in the Face of Glycan Additions and Deletions. bioRxiv 2020, 2020.02.21.959981.

(23) Crispin, M.; Ward, A. B.; Wilson, I. A. Structure and Immune Recognition of the HIV Glycan Shield. Annu. Rev. Biophys. 2018, 47, 499–523.

(24) Baral, P.; Pavadai, E.; Gerstman, B. S.; Chapagain, P. P. In-Silico Identification of the Vaccine Candidate Epitopes against the Lassa Virus Hemorrhagic Fever. Sci. Rep. 2020, 10, 7667.

(25) Verma, S. K.; Yadav, S.; Kumar, A. In Silico Prediction of B- and T- Cell Epitope on Lassa Virus Proteins for Peptide Based Subunit Vaccine Design. Adv. Biomed. Res. 2015, 4, 201– 201.

(26) Park, S. J.; Lee, J.; Qi, Y.; Kern, N. R.; Lee, H. S.; Jo, S.; Joung, I.; Joo, K.; Lee, J.; Im, W. CHARMM-GUI Glycan Modeler for Modeling and Simulation of Carbohydrates and Glycoconjugates. Glycobiology 2019, 29, 320–331.

(27) Ko, J.; Park, H.; Seok, C. GalaxyTBM: Template-Based Modeling by Building a Reliable Core and Refining Unreliable Local Regions. BMC Bioinformatics 2012, 13, 198.

(28) Olsson, M. H. M.; SØndergaard, C. R.; Rostkowski, M.; Jensen, J. H. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical p K a Predictions. J. Chem. Theory Comput. 2011, 7, 525–537.

(29) Kobayashi, C.; Jung, J.; Matsunaga, Y.; Mori, T.; Ando, T.; Tamura, K.; Kamiya, M.; Sugita, Y. GENESIS 1.1: A Hybrid-Parallel Molecular Dynamics Simulator with Enhanced Sampling Algorithms on Multiple Computational Platforms. J. Comput. Chem. 2017, 38, 2193–2206.

(30) Jung, J.; Mori, T.; Kobayashi, C.; Matsunaga, Y.; Yoda, T.; Feig, M.; Sugita, Y. GENESIS: A Hybrid-Parallel and Multi-Scale Molecular Dynamics Simulator with Enhanced Sampling Algorithms for Biomolecular and Cellular Simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5, 310–323.

(31) Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; De Groot, B. L.; Grubmüller, H.; MacKerell, A. D. CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods 2016, 14, 71–73.

(32) Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell, A. D. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone φ, ψ and Side-Chain Χ1 and Χ2 Dihedral Angles. J. Chem. Theory Comput. 2012, 8, 3257–3273.

(33) Guvench, O.; Greenr, S. N.; Kamath, G.; Brady, J. W.; Venable, R. M.; Pastor, R. W.; Mackerell, A. D. Additive Empirical Force Field for Hexopyranose Monosaccharides. J. Comput. Chem. 2008, 29, 2543–2564.

(34) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926– 935.

(35) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 327–341.

(36) Miyamoto, S.; Kollman, P. A. Settle: An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models. J. Comput. Chem. 1992, 13, 952–962.

(37) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593.

(38) Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N·log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092.

(39) Steinbach, P. J.; Brooks, B. R. New Spherical‐cutoff Methods for Long‐range Forces in Macromolecular Simulation. J. Comput. Chem. 1994, 15, 667–683.

(40) Tuckerman, M.; Berne, B. J.; Martyna, G. J. Reversible Multiple Time Scale Molecular Dynamics. J. Chem. Phys. 1992, 97, 1990–2001.

(41) Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101.

(42) Bussi, G.; Zykova-Timan, T.; Parrinello, M. Isothermal-Isobaric Molecular Dynamics Using Stochastic Velocity Rescaling. J. Chem. Phys. 2009, 130, 074101.

(43) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38.

(44) Shrake, A.; Rupley, J. A. Environment and Exposure to Solvent of Protein Atoms. Lysozyme and Insulin. J. Mol. Biol. 1973, 79, 351–371.

(45) Delano, W. L. The PyMOL Molecular Graphics System. 2002.

(46) Jespersen, M. C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving SequenceBased B-Cell Epitope Prediction Using Conformational Epitopes. Nucleic Acids Res. 2017, 45, W24–W29.

(47) Ponomarenko, J.; Bui, H. H.; Li, W.; Fusseder, N.; Bourne, P. E.; Sette, A.; Peters, B. ElliPro: A New Structure-Based Tool for the Prediction of Antibody Epitopes. BMC Bioinformatics 2008, 9, 514.

(48) Doores, K. J.; Bonomelli, C.; Harvey, D. J.; Vasiljevic, S.; Dwek, R. A.; Burton, D. R.; Crispin, M.; Scanlan, C. N. Envelope Glycans of Immunodeficiency Virions Are Almost Entirely Oligomannose Antigens. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 13800–13805.

(49) Acciani, M.; Alston, J. T.; Zhao, G.; Reynolds, H.; Ali, A. M.; Xu, B.; Brindley, M. A. Mutational Analysis of Lassa Virus Glycoprotein Highlights Regions Required for AlphaDystroglycan Utilization. J. Virol. 2017, 91.

(50) Zhu, X.; Liu, Y.; Guo, J.; Wang, Z.; Cao, J.; Xiao, G.; Wang, W. Effects of N-Linked Glycan of Lassa Virus Envelope Glycoprotein on the Immune Response. bioRxiv 2020, 2020.09.29.319855.

(51) Wei, X.; Decker, J. M.; Wang, S.; Hui, H.; Kappes, J. C.; Wu, X.; Salazar-Gonzalez, J. F.; Salazar, M. G.; Kilby, J. M.; Saag, M. S. et al. Antibody Neutralization and Escape by HIV1. Nature 2003, 422, 307–312.

(52) Berndsen, Z. T.; Chakraborty, S.; Wang, X.; Cottrell, C. A.; Torres, J. L.; Diedrich, J. K.; López, C. A.; Yates, J. R.; van Gils, M. J.; Paulson, J. C. et al. Visualization of the HIV-1 Env Glycan Shield across Scales. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 28014–28025.

(53) Yang, M.; Huang, J.; Simon, R.; Wang, L. X.; MacKerell, A. D. Conformational Heterogeneity of the HIV Envelope Glycan Shield. Sci. Rep. 2017, 7, 4435.

(54) Falkowska, E.; Le, K. M.; Ramos, A.; Doores, K. J.; Lee, J. H.; Blattner, C.; Ramirez, A.; Derking, R.; vanGils, M. J.; Liang, C. H. et al. Broadly Neutralizing HIV Antibodies Define a Glycan-Dependent Epitope on the Prefusion Conformation of Gp41 on Cleaved Envelope Trimers. Immunity 2014, 40, 657–668.

(55) Blattner, C.; Lee, J. H.; Sliepen, K.; Derking, R.; Falkowska, E.; delaPeña, A. T.; Cupo, A.; Julien, J. P.; vanGils, M.; Lee, P. S. et al. Structural Delineation of a Quaternary, CleavageDependent Epitope at the Gp41-Gp120 Interface on Intact HIV-1 Env Trimers. Immunity 2014, 40, 669–680.

(56) Dowling, W.; Thompson, E.; Badger, C.; Mellquist, J. L.; Garrison, A. R.; Smith, J. M.; Paragas, J.; Hogan, R. J.; Schmaljohn, C. Influences of Glycosylation on Antigenicity, Immunogenicity, and Protective Efficacy of Ebola Virus GP DNA Vaccines. J. Virol. 2007, 81, 1821–1837.

(57) Sugita, Y.; Okamoto, Y. Replica-Exchange Molecular Dynamics Method for Protein Folding. Chem. Phys. Lett. 1999, 314, 141–151.

(58) Nishima, W.; Miyashita, N.; Yamaguchi, Y.; Sugita, Y.; Re, S. Effect of Bisecting GlcNAc and Core Fucosylation on Conformational Properties of Biantennary Complex-Type NGlycans in Solution. J. Phys. Chem. B 2012, 116, 8504–8512.

(59) Re, S.; Nishima, W.; Miyashita, N.; Sugita, Y. Conformational Flexibility of N-Glycans in Solution Studied by REMD Simulations. Biophys. Rev. 2012, 4, 179–187.

(60) Galvelis, R.; Re, S.; Sugita, Y. Enhanced Conformational Sampling of N-Glycans in Solution with Replica State Exchange Metadynamics. J. Chem. Theory Comput. 2017, 13, 1934–1942.

(61) Galvelis, R.; Sugita, Y. Replica State Exchange Metadynamics for Improving the Convergence of Free Energy Estimates. J. Comput. Chem. 2015, 36, 1446–1455.

(62) Kamiya, M.; Sugita, Y. Flexible Selection of the Solute Region in Replica Exchange with Solute Tempering: Application to Protein-Folding Simulations. J. Chem. Phys. 2018, 149, 072304.

(63) Liu, P.; Kim, B.; Friesner, R. A.; Berne, B. J. Replica Exchange with Solute Tempering: A Method for Sampling Biological Systems in Explicit Water. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 13749–13754.

(64) Wang, L.; Friesner, R. A.; Berne, B. J. Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tempering (REST2). J. Phys. Chem. B 2011, 115, 9431–9438.

(65) Terakawa, T.; Kameda, T.; Takada, S. On Easy Implementation of a Variant of the Replica Exchange with Solute Tempering in GROMACS. J. Comput. Chem. 2011, 32, 1228–1234.

(66) Miao, Y.; Sinko, W.; Pierce, L.; Bucher, D.; Walker, R. C.; McCammon, J. A. Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy Calculation. J. Chem. Theory Comput. 2014, 10, 2677–2689.

(67) Sugita, Y.; Kamiya, M.; Oshima, H.; Re, S. Replica-Exchange Methods for Biomolecular Simulations. Methods Mol. Biol. 2019, 2022, 155–177.

(68) Raoufi, E.; Hemmati, M.; Eftekhari, S.; Khaksaran, K.; Mahmodi, Z.; Farajollahi, M. M.; Mohsenzadegan, M. Epitope Prediction by Novel Immunoinformatics Approach: A State-ofthe-Art Review. Int. J. Pept. Res. Ther. 2020, 26, 1155–1163.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る