リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「MicroRNA-494-3p inhibits formation of fast oxidative muscle fibres by targeting E1A-binding protein p300 in human-induced pluripotent stem cells.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

MicroRNA-494-3p inhibits formation of fast oxidative muscle fibres by targeting E1A-binding protein p300 in human-induced pluripotent stem cells.

IWASAKI Hirotaka 40781589 ICHIHARA Yoshinori MORINO Katsutaro 90444447 0000-0003-2420-3817 LEMECHA Mengistu SUGAWARA Lucia SAWANO Tatsuya MIAKE Junichiro SAKURAI Hidetoshi NISHI Eiichiro 30362528 MAEGAWA Hiroshi 00209363 0000-0002-4611-8149 IMAMURA Takeshi 滋賀医科大学

2021.01.13

概要

MYOD-induced microRNA-494-3p expression inhibits fast oxidative myotube formation by downregulating myosin heavy chain 2 (MYH2) in human induced pluripotent stem cells (hiPSCs) during skeletal myogenesis. However, the molecular mechanisms regulating MYH2 expression via miR-494-3p remain unknown. Here, using bioinformatic analyses, we show that miR-494-3p potentially targets the transcript of the E1A-binding protein p300 at its 3'-untranslated region (UTR). Myogenesis in hiPSCs with the Tet/ON-myogenic differentiation 1 (MYOD1) gene (MyoD-hiPSCs) was induced by culturing them in doxycycline-supplemented differentiation medium for 7 days. p300 protein expression decreased after transient induction of miR-494-3p during myogenesis. miR-494-3p mimics decreased the levels of p300 and its downstream targets MYOD and MYH2 and myotube formation efficiency. p300 knockdown decreased myotube formation efficiency, MYH2 expression, and basal oxygen consumption rate. The binding of miR-494-3p to the wild type p300 3'-UTR, but not the mutated site, was confirmed using luciferase assay. Overexpression of p300 rescued the miR-494-3p mimic-induced phenotype in MyoD-hiPSCs. Moreover, miR-494-3p mimic reduced the levels of p300, MYOD, and MYH2 in skeletal muscles in mice. Thus, miR-494-3p might modulate MYH2 expression and fast oxidative myotube formation by directly regulating p300 levels during skeletal myogenesis in MyoD-hiPSCs and murine skeletal muscle tissues.

この論文で使われている画像

参考文献

1. Schiaffino, S. & Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 91, 1447–1531 (2011).

2. Stuart, C. A. et al. Myosin content of individual human muscle fibers isolated by laser capture microdissection. Am. J. Physiol. Cell

Physiol. 310, C381–C389 (2016).

3. Schiaffino, S., Murgia, M., Leinwand, L. A. & Reggiani, C. Letter to the editor: Comments on Stuart et al. (2016): ‘Myosin content

of individual human muscle fibers isolated by laser capture microdissection. Am. J. Physiol. Cell Physiol. https​://doi.org/10.1152/

ajpce​ll.00294​.2016 (2016).

4. Albers, P. H. et al. Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes. Diabetes 64, 485–497

(2015).

5. Lexell, J. Human aging, muscle mass, and fiber type composition. J. Gerontol. A Biol. Sci. Med. Sci. 50A, 11–16 (1995).

6. Nilwik, R. et al. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp.

Gerontol. 48, 492–498 (2013).

7. Webster, C., Silberstein, L., Hays, A. P. & Blau, H. M. Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy.

Cell 52, 503–513 (1988).

8. Marini, J. F. et al. Expression of myosin heavy chain isoforms in Duchenne muscular dystrophy patients and carriers. Neuromuscul.

Disord. 1, 397–409 (1991).

9. Tapscott, S. J. et al. MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science

242, 405–411 (1988).

10. Puri, P. L. et al. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol. Cell 1, 35–45 (1997).

11. Polesskaya, A. et al. CBP/p300 and muscle differentiation: no HAT, no muscle. EMBO J. 20, 6816–6825 (2001).

12. Alamdari, N., Aversa, Z., Castillero, E. & Hasselgren, P.-O. Acetylation and deacetylation–novel factors in muscle wasting. Metabolism 62, 1–11 (2013).

13. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

14. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433,

769–773 (2005).

15. Sokol, N. S. The role of MicroRNAs in muscle development. Curr. Top. Dev. Biol. 99, 59–78 (2012).

16. Goljanek-Whysall, K., Sweetman, D. & Münsterberg, A. E. microRNAs in skeletal muscle differentiation and disease. Clin. Sci.

123, 611–625 (2012).

17. Eisenberg, I. et al. Distinctive patterns of microRNA expression in primary muscular disorders. Proc. Natl. Acad. Sci. USA 104,

17016–17021 (2007).

18. McCarthy, J. J., Esser, K. A. & Andrade, F. H. MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of

mdx mouse. Am. J. Physiol. Cell Physiol. 293, C451–C457 (2007).

19. McCarthy, J. J. & Esser, K. A. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J.

Appl. Physiol. 102, 306–313 (2007).

20. Chen, J. F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38,

228–233 (2006).

21. van Rooij, E. et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev.

Cell 17, 662–673 (2009).

22. Chen, J. F. et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J. Cell Biol. 190, 867–879 (2010).

23. Wang, L. et al. Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis. Mol. Ther. 20, 1222–1233 (2012).

24. Hirai, H. et al. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J. Cell Biol. 191,

347–365 (2010).

25. Small, E. M. et al. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc. Natl. Acad. Sci. USA 107,

4218–4223 (2010).

26. Crist, C. G., Montarras, D. & Buckingham, M. Muscle satellite cells are primed for myogenesis but maintain quiescence with

sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell 11, 118–126 (2012).

27. Cheung, T. H. et al. Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482, 524–528 (2012).

28. Koning, M., Werker, P. M. N., van Luyn, M. J. A., Krenning, G. & Harmsen, M. C. A global downregulation of microRNAs occurs

in human quiescent satellite cells during myogenesis. Differentiation 84, 314–321 (2012).

29. Marzi, M. J. et al. Differentiation-associated microRNAs antagonize the Rb-E2F pathway to restrict proliferation. J. Cell Biol. 199,

77–95 (2012).

30. Iwasaki, H. et al. MicroRNA-494 plays a role in fiber type-specific skeletal myogenesis in human induced pluripotent stem cells.

Biochem. Biophys. Res. Commun. 468, 208–213 (2015).

31. Yamamoto, H. et al. MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription

factor A and Forkhead box j3. Am. J. Physiol. Endocrinol. Metab. 303, E1419–E1427 (2012).

32. Sun, Y. et al. Voluntary wheel exercise alters the levels of miR-494 and miR-696 in the skeletal muscle of C57BL/6 mice. Comp.

Biochem. Physiol. B Biochem. Mol. Biol. 202, 16–22 (2016).

33. Lin, H. et al. MiR-494-3p promotes PI3K/AKT pathway hyperactivation and human hepatocellular carcinoma progression by

targeting PTEN. Sci. Rep. 8, 10461 (2018).

Scientific Reports |

Vol:.(1234567890)

(2021) 11:1161 |

https://doi.org/10.1038/s41598-020-80742-y

12

www.nature.com/scientificreports/

34. Liu, Y. et al. Ectopic expression of MIR-494 inhibited the proliferation, invasion and chemoresistance of pancreatic cancer by

regulating SIRT1 and c-Myc. Gene Ther. 22, 729–738 (2015).

35. Peng, Q.-P., Du, D.-B., Quan, M., Wu, Z.-B. & Qiu, S. Cellular and molecular biology MicroRNA 494 increases chemosensitivity

to doxorubicin in gastric cancer cells by targeting phosphodiesterases 4D. Cell. Mol. Biol. 64, 62–66 (2018).

36. Wu, D., Hong, J. & Xu, J. MicroRNA-494 is highly expressed in human cornea epithelium cells (HCECs) and inhibits nerve growth

factor (NGF)-induced cell proliferation through targeting cyclin D1. Investig. Ophthalmol. Vis. Sci. 55, 5517 (2014).

37. Verma, J. K., Rastogi, R. & Mukhopadhyay, A. Leishmania donovani resides in modified early endosomes by upregulating Rab5a

expression via the downregulation of miR-494. PLoS Pathog. 13(6), e1006459 (2017).

38. Zhan, M. N. et al. MicroRNA-494 inhibits breast cancer progression by directly targeting PAK1. Cell Death Dis. 8(1), e2529 (2017).

39. Li, N. et al. miR-494 suppresses tumor growth of epithelial ovarian carcinoma by targeting IGF1R. Tumor Biol. 37, 7767–7776

(2016).

40. Lemecha, M. et al. MiR-494-3p regulates mitochondrial biogenesis and thermogenesis through PGC1-α signalling in beige adipocytes. Sci. Rep. 8, 15096 (2018).

41. Dey, B. K., Pfeifer, K. & Dutta, A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote

skeletal muscle differentiation and regeneration. Genes Dev. 28, 491–501 (2014).

42. Eulalio, A. et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492, 376–381 (2012).

43. Ge, Y., Sun, Y. & Chen, J. IGF-II is regulated by microRNA-125b in skeletal myogenesis. J. Cell Biol. 192, 69–81 (2011).

44. Teppen, T. L., Krishnan, H. R., Zhang, H., Sakharkar, A. J. & Pandey, S. C. The potential role of amygdaloid MicroRNA-494 in

alcohol-induced anxiolysis. Biol. Psychiatry 80, 711–719 (2016).

45. Ehlers, M. L., Celona, B. & Black, B. L. NFATc1 controls skeletal muscle fiber type and is a negative regulator of MyoD activity.

Cell Rep. 8, 1639–1648 (2014).

46. Roth, J.-F. et al. Differential role of p300 and CBP acetyltransferase during myogenesis: p300 acts upstream of MyoD and Myf5.

EMBO J. 22, 5186–5196 (2003).

47. Lundblad, J. R., Kwok, R. P. S., Laurance, M. E., Harter, M. L. & Goodman, R. H. Adenoviral ElA-associated protein p300 as a

functional homologue of the transcriptional co-activator CBP. Nature 374, 85–88 (1995).

48. Chen, J. & Li, Q. Life and death of transcriptional co-activator p300. Epigenetics 6, 957–961 (2011).

49. Li, Q. et al. Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70

promoter in vivo. EMBO J. 17, 6300–6315 (1998).

50. Li, Q., Imhof, A., Collingwood, T. N., Urnov, F. D. & Wolffe, A. P. p300 stimulates transcription instigated by ligand-bound thyroid

hormone receptor at a step subsequent to chromatin disruption. EMBO J. 18, 5634–5652 (1999).

51. Blum, R. & Dynlacht, B. D. The role of MyoD1 and histone modifications in the activation of muscle enhancers. Epigenetics 8,

778–784 (2013).

52. Tanaka, A. et al. Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling miyoshi myopathy in vitro. PLoS ONE 8, e61540 (2013).

53. Le Bihan, M. C. et al. Cellular proteome dynamics during differentiation of human primary myoblasts. J. Proteome Res. 14,

3348–3361 (2015).

54. Valencia-Sanchez, M. A., Liu, J., Hannon, G. J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs.

Genes Dev. 20, 515–524 (2006).

55. Hausser, J. et al. Timescales and bottlenecks in miRNA-dependent gene regulation. Mol. Syst. Biol. 9, 711 (2013).

56. Rhizobium, G. E. Complete genome sequence of the sesbania symbiont and rice. Nucleic Acids Res. 1, 13–14 (2013).

57. Liu, Y., Beyer, A. & Aebersold, R. Leading edge review on the dependency of cellular protein levels on mRNA abundance. Cell 165,

535–550 (2016).

58. Chen, J., Halappanavar, S. S., St-Germain, J. R., Tsang, B. K. & Li, Q. Role of Akt/protein kinase B in the activity of transcriptional

coactivator p300. Cell. Mol. Life Sci. 61, 1675–1683 (2004).

59. Avantaggiati, M. L. et al. The SV40 large T antigen and adenovirus E1a oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J. 15, 2236–2248 (1996).

60. Yaciuk, P. & Moran, E. Analysis with specific polyclonal antiserum indicates that the E1A-associated 300-kDa product is a stable

nuclear phosphoprotein that undergoes cell cycle phase-specific modification. Mol. Cell. Biol. 11, 5389–5397 (1991).

61. Chen, J., Ghazawi, F. M. & Li, Q. Interplay of bromodomain and histone acetylation in the regulation of p300-dependent genes.

Epigenetics 5, 509–515 (2010).

62. Lee, H., Jee, Y., Hong, K., Hwang, G. S. & Chun, K.-H. MicroRNA-494, upregulated by tumor necrosis factor-α, desensitizes insulin

effect in C2C12 muscle cells. PLoS ONE 8, e83471 (2013).

63. Iwawaki, Y. et al. MiR-494-3p induced by compressive force inhibits cell proliferation in MC3T3-E1 cells. J. Biosci. Bioeng. 120,

456–462 (2015).

64. Doumatey, A. P. et al. Global gene expression profiling in omental adipose tissue of morbidly obese diabetic African Americans.

J. Endocrinol. Metab. 5, 199–210 (2015).

65. Li, Y. et al. HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res.

42, D1070-4 (2014).

66. Denham, J. & Prestes, P. R. Muscle-enriched MicroRNAs isolated from whole blood are regulated by exercise and are potential

biomarkers of cardiorespiratory fitness. Front. Genet. 7, 196 (2016).

67. Betel, D., Wilson, M., Gabow, A., Marks, D. S. & Sander, C. The microRNA.org resource: targets and expression. Nucleic Acids Res.

36, D149–D153 (2008).

68. Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4, e05005

(2015).

69. McColl, R., Nkosi, M., Snyman, C. & Niesler, C. Analysis and quantification of in vitro myoblast fusion using the LADD multiple

stain. Biotechniques 61, 323–326 (2016).

Acknowledgements

We thank Dr. Yamamoto H, Ms. Kosaka K and Ms. Morinaga R for technical assistance. This work was supported by the JSPS KAKENHI Grant Numbers JP17K17814 (H.I.), JP25461342 (K.M.), JP15K08229 (T.I.) and

JP19K09020 (K.M.) and by Research Funding Grant by the president of Shiga University of Medical Science. We

would like to thank Editage (www.edita​ge.com) for English language editing.

Author contributions

H.I. designed the study, performed experiments, analysed data, and wrote the manuscript. Y.I., M.L. and L.S.

performed experiments. K.M. and T.I. designed the study and wrote the manuscript. T.S., J.M., H.S., E.N. and

H.M. made suggestions for the study design and experiments. All authors commented on the manuscript.

Scientific Reports |

(2021) 11:1161 |

https://doi.org/10.1038/s41598-020-80742-y

13

Vol.:(0123456789)

www.nature.com/scientificreports/

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https​://doi.

org/10.1038/s4159​8-020-80742​-y.

Correspondence and requests for materials should be addressed to K.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

Scientific Reports |

Vol:.(1234567890)

(2021) 11:1161 |

https://doi.org/10.1038/s41598-020-80742-y

14

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る