リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A comprehensive modeling to bridge across laboratory, field and basin data for exposure assessment of paddy pesticide in aquatic environment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A comprehensive modeling to bridge across laboratory, field and basin data for exposure assessment of paddy pesticide in aquatic environment

Kondo, Kei 東京農工大学

2021.05.10

概要

In Japan, paddy pesticide applied to paddy field is more prone to runoff to the outsides of the fields, and therefore one of the major concerns for the pollution of aquatic environment. Although the pesticide safety in the environment has been rigorously screened under the standard scenarios in the registration, this approach cannot cover the regionally-variated actual field condition where the monitoring study is conducted as the exposure assessment in post-registration process. Therefore, this study aimed to develop a comprehensive modeling of paddy pesticide to assess the regional exposure characteristics of paddy pesticides.

Four-year experiments were conducted to compare the dissipation patterns of a total of 20 pesticides in various formulations applied by submerged application, nursery-box application and foliar application in flooded lysimeters (lysimeters) and paddy fields with two soil types. The similarities of the dissipation data between test plots were assessed by the simple kinetic modeling to derive DT50. For submerged application, although the lysimeters could simulate nearly half of the decreasing phase of dissipation with granular formulations in paddy fields, the accuracy of the detection level was low. This tendency was consistent for flowable formulation. For the case of nursery-box and foliar application cases, the detection levels were comparable between lysimeters and paddy fields. From these results, the submerged application scenario had the highest possibility to variate the pesticide dissipation patterns between lysimeters and paddy fields.

For more detailed analysis, an inverse analysis procedure of paddy pesticide dissipation was developed using the mathematical model (PCPF-1R model) and open software R packages. The developed procedure was verified using the dissipation data of simetryn and molinate applied in the lysimeters and the paddy fields. The model calibration was performed by the global and local sensitivity analyses and Markov Chain Monte Carlo (MCMC) technique. From the calibrated simulations of simetryn and molinate showed that the current experimental deign of the lysimeters might underestimate the paddy fields mainly due to the faster daily percolation setting in the lysimeter. However, this problem was successfully improved by modifying experimental design of lysimeter through the case study.

To clarify the pesticide behavior in soil and interface between paddy water and soil, a laboratory container tests for flooded soils applying four herbicides were conducted. The results were subjected to in-laboratory inverse analysis using PCPF-LR model.

この論文で使われている画像

参考文献

Abbaspour, K.C., Johnson, C.A., van Genuchten, M.T., 2004. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J, 3(4): 1340-1352.

Abbaspour, K.C. et al., 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol., 333(2): 413-430.

Abbott, M.B., 1979. Computational Hydraulics, Elements of the Theory of Free-Surface Flows. Pitman Publishing Ltd., Boston, London.

Adachi, K., 1988. Experimental Studies of the Effects of Puddling on Percolation Control Studies on the water movement of rotational paddy fields. Trans. JSIDRE, 1988(135): 1-8 (in Japanese).

Adriaanse, P.I., 1996. Fate of pesticides in field ditches: the TOXSWA simulation model. Report 90; DLO Winand Staring Centre for Integrated Land, Soil and Water Research: Wageningen, The Netherlands.

Adriaanse, P.I., Boesten, J.J., Crum, S.J., 2013. Estimating degradation rates in outdoor stagnant water by inverse modelling with TOXSWA: a case study with prosulfocarb. Pest Manag. Sci., 69(6): 755-767.

Agricultural Production Bureau Ministry of Agriculture Forestry and Fisheries, 2000. Guidelines for Preparation of Study Results Submitted When Applying for Registration of Agricultural Chemicals (The notification No.12-Nousan-8147, issued on November 24, 2000).<http://www.acis.famic.go.jp/eng/shinsei/8147annex.pdf>, 24 October 2018.

Aida, M. et al., 2004. Susceptibilities of some aquatic ferns to paddy herbicide bensulfuron methyl. Weed Biol. Manag., 4(3): 127-135.

Akan, A.O., Yen, B.C., 1981. Diffusion-wave flood routing in channel networks. J. Hydraul. Div., 107(6): 719-732.

Alister, C.A., Araya, M.A., Kogan, M., 2011. Adsorption and desorption variability of four herbicides used in paddy rice production. J. Environ. Sci. Health. B, 46(1): 62-8.

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56, Food and Agriculture Organization of the United Nations, Rome.

Anasco, N., Uno, S., Koyama, J., Matsuoka, T., Kuwahara, N., 2010. Assessment of pesticide residues in freshwater areas affected by rice paddy effluents in Southern Japan. Environ. Monit. Assess., 160(1-4): 371-83.

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic modelling and assessment. Part I. Model Development 1. J. Am. Water Works. Assoc., 34(1): 73-89.

Arsenault, R., Brissette, F., Martel, J.-L., 2018. The hazards of split-sample validation in hydrological model calibration. J. Hydrol., 566: 346-362.

Bennett, N.D. et al., 2013. Characterising performance of environmental models. Environ. Modell. Softw., 40: 1-20.

Blacquiere, T., van der Steen, J.J., 2017. Three years of banning neonicotinoid insecticides based on sub-lethal effects: can we expect to see effects on bees? Pest Manag. Sci., 73(7): 1299-1304.

Boudina, A., Emmelin, C., Baaliouamer, A., Paisse, O., Chovelon, J.M., 2007. Photochemical transformation of azoxystrobin in aqueous solutions. Chemosphere, 68(7): 1280-8.

Boulange, J., Kondo, K., Phong, T.K., Watanabe, H., 2012. Analysis of parameter uncertainty and sensitivity in PCPF-1 modeling for predicting concentrations of rice herbicides. J. Pestic. Sci., 37(4): 323-332.

Boulange, J., Malhat, F., Thuyet, D.Q., Watanabe, H., 2017a. PCPF-M model for simulating the fate and transport of pesticides and their metabolites in rice paddy field. Pest Manag. Sci., 73(12): 2429-2438.

Boulange, J., Thuyet, D.Q., Jaikaew, P., Watanabe, H., 2016. Simulating the fate and transport of nursery-box-applied pesticide in rice paddy fields. Pest Manag. Sci., 72(6): 1178-86.

Boulange, J., Watanabe, H., Akai, S., 2017b. A Markov Chain Monte Carlo technique for parameter estimation and inference in pesticide fate and transport modeling. Ecol. Modell., 360(24): 270-278.

Boulange, J. et al., 2014. Development and validation of a basin scale model PCPF-1 SWAT for simulating fate and transport of rice pesticides. J. Hydrol., 517: 146-156.

Briggs, G.G., Bromilow, R.H., Evans, A.A., 1982. Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic. Sci., 13(5): 495-504.

Brooks, S.P., Gelman, A., 1998. General Methods for Monitoring Convergence of Iterative Simulations. J. Comput. Graph. Stat, 7(4): 434-455.

Brun, R., Reichert, P., Künsch, H.R., 2001. Practical identifiability analysis of large environmental simulation models. Water Resour. Res., 37(4): 1015-1030.

Burns, L.A., Cline, D.M., Lassiter, R.R., 2000. Exposure Analysis Modeling System (EXAMS): User Manual and System Documentation. Report ETA-600/3-82-023. Environmental Research Laboratory Office of Research and Development, US Environmental Protection Agency, Athens, GA.

Carsel, R.F., Mulkey, L.A., Lorber, M.N., Baskin, L.B., 1985. The Pesticide Root Zone Model (PRZM): A procedure for evaluating pesticide leaching threats to groundwater. Ecol. Modell., 30(1): 49-69.

Chapra, S.C., 1997. Surface water-quality modeling. waveland Press, Inc., Long Grove, IL. Choi, C.C., Constantinescu, G., Mantilla, R., 2015. Implementation of a Hydraulic Routing Model for Dendritic Networks with Offline Coupling to a Distributed Hydrological Model. J. Hydrol. Eng., 20(11): 04015023.

Chow, V.T., 1959. Open-channel hydraulics, McGraw-Hill, New York.

Christen, E.W., Chung, S.-O., Quayle, W., 2006. Simulating the fate of molinate in rice paddies using the RICEWQ model. Agric. Water Manag., 85(1): 38-46.

Cooley, R.L., Moin, S.A., 1976. Finite element solution of Saint-Venant equations. J. Hydraul. Div., 102(6): 759-775.

Cunge, J.A., Holly, F.M., Verwey, A., 1980. Practical aspects of computational river hydraulics. Pitman Publishing Ltd., Boston, London.

Daggupati P et al., 2015. A Recommended Calibration and Validation Strategy for Hydrologic and Water Quality Models. Trans. ASABE, 58(6): 1705-1719.

Doherty, J., 2016. PEST - Model-Independent Parameter Estimation. User Manual, 6th edition. Watermark Numerical Computing, Brisbane, Australia.

Doran, G., Eberbach, P., Helliwell, S., 2009. Sorption and Degradation of Fipronil in Flooded Anaerobic Rice Soils. J. Agric. Food Chem., 57(21): 10296-10301.

Dubus, I.G., Beulke, S., Brown, C.D., Gottesbüren, B., Dieses, A., 2004. Inverse modelling for estimating sorption and degradation parameters for pesticides. Pest. Manag. Sci., 60(9): 859-874.

Dubus, I.G., Janssen, P.H.M., 2003. Issues of replicability in Monte Carlo modeling: A case study with a pesticide leaching model. Environ. Toxicol. Chem., 22(12): 3081-3087.

Ebise, S., Kawamura, H., 2006. Evaluation of Runoff Pesticides by High-Frequency Observation and Flooding-Stage Observations in Yodo River. J. Jpn. Soc. Water Environ., 29(11): 705-713 (in Japanese).

EurActiv, 2018. <https://www.euractiv.com/section/agriculture-food/news/invoking- science-europe-shuts-the-door-to-neonics/> Accessed August 5, 2019.

European Commission, 2009. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Off. J. Eur. Union, 309: 1-50.

European Commission, 2011. Commission Regulation (EU) No 544/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the data requirements for active substances Text with EEA relevance. Off. J. Eur. Union, 155: 1-66.

European Commission, 2013a. Commission implementing regulation (EU) No 485/2013 of 24 May 2013 amending Implementing Regulation (EU) No 540/2011, as regards the conditions of approval of the active substances clothianidin, thiamethoxam and imidacloprid, and prohibiting the use and sale of seeds treated with plant protection products containing those active substances. Off. J. Eur. Union, 139: 12-26 European Commission, 2013b. Commission implementing Regulation (EU) No 781/2013 of 14 August 2013 amending Implementing Regulation (EU) No 540/2011, as regards the conditions of approval of the active substance fipronil, and prohibiting the use and sale of seeds treated with plant protection products containing this active substance. Off. J. Eur. Union, 219: 22-25.

European Commission, 2013c. Commission Regulation (EU) No 283/2013 of 1 March 2013 setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market Text with EEA relevance. Off. J. Eur. Union, 93: 1-84.

Führ, F. et al., 1998. Comprehensive Tracer Studies on the Environmental Behavior of Pesticides: The Lysimeter Concept, The Lysimeter Concept. ACS Symposium Series. American Chemical Society, pp. 1-20.

Fajardo, F., Takagi, K., Usui, K., 2000a. Dissipation of Mefenacet and Pretilachlor in Paddy Soils under Laboratory Oxidative and Reductive Conditions. J. Weed Sci. Tech., 45: 250-253.

Fajardo, F.F., Takagi, K., Ishizaka, M., Usui, K., 2000b. Pattern and Rate of Dissipation of Pretilachlor and Mefenacet in Plow Layer and Paddy Water under Lowland Field Conditions: A Three-year Study. J. Pestic. Sci., 25(2): 94-100.

FAMIC, 2009.<http://www.acis.famic.go.jp/syouroku/orysastrobin/index.htm > Accessed September 17, 2019 (in Japanese).

FAMIC, 2015.<http://www.acis.famic.go.jp/syouroku/azoxystrobin/index.htm> Accessed September 17, 2019 (in Japanese).

FAMIC, 2018a.<http://www.acis.famic.go.jp/syouroku/buprofezin/index.htm> Accessed September 17, 2019 (in Japanese).

FAMIC, 2018b. Application documents and related test results for registration of agricultural chemicals, in Japanese.<http://www.acis.famic.go.jp/syouroku/> Accessed September 17, 2019 (in Japanese).

FAO, 2019. FAOSTAT statistical database. Food and Agriculture Organization of the United Nations.

Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., Brooks, N.H., 1979. Mixing in Inland and Coastal Waters. Academic Press, San Diego.

FOCUS, 2001. FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC. Report of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001-rev.2.

FOCUS, 2006a. Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration. Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0.

FOCUS, 2006b. Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration. Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, pp. 434.

FOCUS, 2009. Assessing Potential for Movement of Active Substances and their Metabolites to Ground Water in the EU. Report of the FOCUS Ground Water Work Group, EC Document Reference Sanco/13144/2010 version 1, 604 pp.

Görlitz, L., Gao, Z., Schmitt, W., 2011. Statistical Analysis of Chemical Transformation Kinetics Using Markov-Chain Monte Carlo Methods. Environ. Sci. Technol., 45(10): 4429-4437.

Gelman, A. et al., 2013. Bayesian data analysis third Edition. CRC Press, Boca Raton, FL. Gelman, A., Roberts, G.O., Gilks, W.R., 1995. Efficient Metropolis Jumping Rules. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (Eds.), Bayesian Statistics 5, Oxford University Press: Oxford.

Gilles Pujol, Bertrand Iooss, Alexandre Janon, with contributions from Khalid Boumhaout, S.D.V., Thibault Delage, Jana Fruth, Laurent Gilquin, Joseph Guillaume, Loic Le Gratiet, Paul Lemaitre, Barry L. Nelson, Filippo Monari, Roelof Oomen, Bernardo Ramos, Olivier Roustant, Eunhye Song, Jeremy Staum, Taieb Touati, Frank Weber 2017. sensitivity: Global Sensitivity Analysis of Model Outputs, R package version 1.15.0. https://CRAN.R-project.org/package=sensitivity .

Goulson, D., Kleijn, D., 2013. REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol., 50(4): 977-987.

GSI, 2019. Digital Elevation Model. Geospatial Information Authority of Japan.<https://fgd.gsi.go.jp/download/menu.php> Accessed August 27, 2019.

Gunasekara, A.S., Truong, T., Goh, K.S., Spurlock, F., Tjeerdema, R.S., 2007. Environmental fate and toxicology of fipronil. J. Pestic. Sci., 32(3): 189-199.

Gupta, H.V., Sorooshian, S., Yapo, P.O., 1999. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng., 4(2): 135-143.

Haario, H., Laine, M., Mira, A., Saksman, E., 2006. DRAM: Efficient adaptive MCMC. Stat. Comput., 16(4): 339-354.

Hamby, D.M., 1994. A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess., 32(2): 135-154.

Hanayama, S., Kasubuchi, T., Annaka, T., 2009. Convective velocity of ponded water in the vegetated paddy lysimeter. Paddy Water Environ., 7(3): 255-258.

Hassan, A., Tanaka, N., Tamai, N., 2009. Distributed water balance with river dynamic-diffusive flow routing model. J. Hydrodynam. B, 21(4): 564-572.

Hatakeyama, N., 2006a. In: Hatakeyama, N. (Ed.), Ecological Risk Assessment and Regulation of Chemical Substances -Agricultural Chemicals-. IPC, Tokyo, Japan.

Hatakeyama, S., 2006b. Assessment of overall herbicide effects on river ecosystems through periphyton and aquatic plants. Jpn. J. Environ. Toxicol., 9(2): 51-60 (in Japanese).

Hatakeyama, S., Fukushima, S., Kasai, F., Shiraishi, H., 1994. Assessment of herbicide effects on algal production in the Kokai River (Japan) using a model stream and Selenastrum bioassay. Ecotoxicology, 3(2): 143-156.

Hattori, M., 2018. Chapter 3. In: Umetsu, N. (Ed.), Trend in Pesticide Discovery Research -Development of Safer and Environmentally Friendly Pesticides-. CMC Publishing CO.,LTD., Tokyo, Japan, pp. 32-42 (in Japanese).

Hayasaka, D. et al., 2013a. Effects of two successive annual treatments of two systemic insecticides, imidacloprid and fipronil, on dragonfly nymph communities in experimental paddies. Jpn. J. Pestic. Sci., 38(2): 101-107 (in Japanese).

Hayasaka, D. et al., 2013b. Comparison of acute toxicity of two neonicotinoid insecticides, imidacloprid and clothianidin, to five cladoceran species. J. Pestic. Sci., 38(1): 44-47.

Holvoet, K.M.A., Seuntjens, P., Vanrolleghem, P.A., 2007. Monitoring and modeling pesticide fate in surface waters at the catchment scale. Ecol. Modell., 209(1): 53-64.

Honti, M. et al., 2018. Relating Degradation of Pharmaceutical Active Ingredients in a Stream Network to Degradation in Water‐Sediment Simulation Tests. Water Resour. Res., 54(11): 9207-9223.

Honti, M., Fenner, K., 2015. Deriving Persistence Indicators from Regulatory Water-Sediment Studies – Opportunities and Limitations in OECD 308 Data. Environ. Sci. Technol., 49(10): 5879-5886.

Hothorn, T., Bretz, F., Westfall, P., 2008. Simultaneous Inference in General Parametric Models. Biom. J, 50(3): 346-363.

Howell, T., Schneider, A.D., Jensen, M., 1991. History of Lysimeter Design and Use for Evapotranspiration Measurements. In: Allen, R.G., Howell, T.A., Pruitt, W.O., Walter, L., Jensen, M.E. (Eds.), Lysimeters for Evapotranspiration and Environmental Measurements. ASCE, New York, pp. 1-9.

Iman, R.L., Conover, W.J., 1979. The Use of the Rank Transform in Regression. Technometrics, 21(4): 499-509.

Inao, K. et al., 2011. Predicting the behavior of paddy pesticides in a river basin using a simulation model (PADDY-Large): Application to a tributary of the Chikuma River under rice cultivation. J. Pestic. Sci., 36(3): 413-427.

Inao, K., Ishii, Y., Kobara, Y., Kitamura, Y., 2001. Prediction of Pesticide Behavior in Paddy Field by Water Balance on the Water Management Using Pesticide Paddy Field Model (PADDY). J. Pestic. Sci., 26(3): 229-235.

Inao, K., Ishii, Y., Kobara, Y., Kitamura, Y., 2003. Landscape-Scale Simulation of Pesticide Behavior in River Basin due to Runoff from Paddy Fields Using Pesticide Paddy Field Model (PADDY). J. Pestic. Sci., 28(1): 24-32.

Inao, K., Iwafune, T., Horio, T., 2018a. An improved PADDY model including uptake by rice roots to predict pesticide behavior in paddy fields under nursery-box and submerged applications. J. Pestic. Sci., 43(2): 142-152.

Inao, K., Iwafune, T., Horio, T., Kitayama, I., 2018b. Behavior of isoprothiolane and fipronil in paddy water, soil, and rice plants after nursery-box or submerged applications. J. Pestic. Sci., 43(2): 132-141.

Inao, K., Iwasaki, N., Kitayama, I., Horio, T., 2016. Improved PADDY-Large model including lateral seepage loss from paddy fields to predict pesticide behavior in river basins. J. Pestic. Sci., 41(2): 59-63.

Inao, K., Kitamura, Y., 1999. Pesticide paddy field model (PADDY) for predicting pesticide concentrations in water and soil in paddy fields. Pestic. Sci., 55(1): 38-46.

Inao, K., Mizutani, H., Yogo, Y., Ikeda, M., 2009. Improved PADDY model including photoisomerization and metabolic pathways for predicting pesticide behavior in paddy fields: Application to the herbicide pyriminobac-methyl. J. Pestic. Sci., 34(4): 273-282.

Inao, K., Nagai, T., Iwasaki, N., 2014. Mathematical Model of Pesticide Fate and Transport in River Basin for Quantitative Ecological Risk Assessment Using Species Sensitivity Distribution. ENVIRONMENTAL SCIENCE, 27(4): 248-260 (in Japanese).

Inao, K., Watanabe, H., Karpouzas, D.G., Capri, E., 2008. Simulation Models of Pesticide Fate and Transport in Paddy Environment for Ecological Risk Assessment and Management. Japan Agricultural Research Quarterly: JARQ, 42(1): 13-21.

Ishii, Y., Inao, K., Kobara, Y., 2004. Dissipation of Some Herbicides in a Flooded Rice Field and Increase of Water-Holding Times after Application of Herbicides. Bull. Natl. Inst. Agro. Environ. Sci., 23: 15-25 (in Japanese).

Ishikawa, T., 1980. Review of Herbicides (3). J. Weed Sci. Tech., 25(3): 217-231.

Iwafune, T. et al., 2010. Behavior of paddy pesticides and major metabolites in the Sakura River, Ibaraki, Japan. J. Pestic. Sci., 35(2): 114-123.

Iwafune, T., Yokoyama, A., Nagai, T., Horio, T., 2011. Evaluation of the risk of mixtures of paddy insecticides and their transformation products to aquatic organisms in the Sakura River, Japan. Environ. Toxicol. Chem., 30(8): 1834-1842.

Iwasaki, N., Inao, K., Iwafune, T., Horio, T., Obara, H., 2012. Coupling of the PADDY-Large model with geospatial information for predicting paddy pesticide behavior in river basins. Limnology, 13(2): 221-235.

Izawa, T., Fujii, Y., Asaka, S., 1981. Degradation of MCPBE, Simetryne and Methoxyphenone in Reductive Flooded Soils. J. Pestic. Sci., 6(2): 223-226 (in Japanese).

Janssen, P.H.M., Heuberger, P.S.C., 1995. Calibration of process-oriented models. Ecol. Modell., 83(1): 55-66.

Jarvis, N.J., Stähli, M., Bergström, L., Johnsson, H., 1994. Simulation of dichlorprop and bentazon leaching in soils of contrasting texture using the MACRO model. J. Environ. Sci. Health A, 29(6): 1255-1277.

Jasper, J.T., Sedlak, D.L., 2013. Phototransformation of Wastewater-Derived Trace Organic Contaminants in Open-Water Unit Process Treatment Wetlands. Environ. Sci. Technol., 47(19): 10781-10790.

JCPA, 2019.<https://www.jcpa.or.jp/labo/data.html> Accessed July 17, 2019(Japanese)).

Jha, R., Herath, S., Musiake, K., 2000. River network solution for a distributed hydrological model and applications. Hydrol. Process., 14(3): 575-592.

Jin, S.-H., Choi, D.-H., Yoon, K.-S., Choi, W.-J., Shim, J.-H., 2016. Estimation of Runoff Ratios of Pesticide Residue from Paddy Fields Using the RICEWQ Model. Irrig. Drain., 65(S2): 121-130.

Jinguji, H., Ueda, T., Goka, K., Hidaka, K., Matsura, T., 2009. Effects of Imidacroprid and Fipronil insecticide Application on the Larvae and Adults of Sympetrum frequens (Libellulidae:Odonata). Trans. JSIDRE, 77(1): 35-41 (in Japanese).

JPPA, 2018. Nouyaku Gaisetsu. 2018. Japan Plant Protection Association, Tokyo, Japan (in Japanese).

Kahl, G.M., Sidorenko, Y., Gottesbüren, B., 2015. Local and global inverse modelling strategies to estimate parameters for pesticide leaching from lysimeter studies. Pest Manag. Sci., 71(4): 616-631.

Kamo, M., Tsushima, K., Naito, W., 2009. An "adaptive management": A new approach for the protection of ecosystem from chemicals. ENVIRONMENTAL SCIENCE, 22(3): 219-225 (in Japanese).

Kang, K., Merwade, V., 2011. Development and application of a storage–release based distributed hydrologic model using GIS. J. Hydrol., 403(1): 1-13.

Karpouzas, D.G., Capri, E., 2006. Risk analysis of pesticides applied to rice paddies using RICEWQ 1.6.2v and RIVWQ 2.02. Paddy Water Environ., 4(1): 29-38.

Karpouzas, D.G., Capri, E., Papadopoulou-Mourkidou, E., 2005a. Application of the RICEWQ-VADOFT model to simulate leaching of propanil in rice paddies in Greece. Agron. Sustain. Dev., 25(1): 35-44.

Karpouzas, D.G., Cervelli, S., Watanabe, H., Capri, E., Ferrero, A., 2006. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models. Pest Manag. Sci., 62(7): 624-636.

Karpouzas, D.G., Ferrero, A., Vidotto, F., Capri, E., 2005b. Application of the ricewq—vadoft model for simulating the environmental fate of pretilachlor in rice paddies. Environ. Toxicol. Chem., 24(4): 1007-1017.

Karpouzas, D.G., Miao, Z., 2008. Chapter 7 - Higher Tier Exposure Assessment in Rice Paddy Areas: A European Perspective. In: Capri, E., Karpouzas, D. (Eds.), Pesticide Risk Assessment in Rice Paddies. Elsevier, Amsterdam, pp. 125-254.

Kasai, F., Hatakeyama, S., 1993. Herbicide susceptibility in two green algae, Chlorella vulgaris and Selenastrum capricornutum. Chemosphere, 27(5): 899-904.

Katagi, T., 2006. Behavior of Pesticides in Water—Sediment Systems. Rev. Environ. Contam. Toxicol., 187: 133-251.

Katagi, T., 2016. Pesticide behavior in modified water-sediment systems. J. Pestic. Sci., 41(4): 121-132.

Katayama, A., 2004. In: Pesticide Science Society of Japan et al. (Eds.), Frontiers of Environmental Pesticide Science. Soft Science, Inc, Tokyo, Japan, pp. 223-338.

Kawakami, T. et al., 2007. Adsorption and desorption characteristics of several herbicides on sediment. J. Environ. Sci. Health. B, 42(1): 1-8.

Kawamura, H., Ebise, S., 2014. High-Frequency Observations of Pesticide Runoff Characteristics in Yodo River with Reference to Three Major Tributaries. J. Water Environ. Technol., 12(3): 307-320.

Kibe, K., Takahashi, M., Kameya, T., Urano, K., 2000a. Adsorption equilibriums of principal herbicides on paddy soils in Japan. Sci. Total Environ., 263(1): 115-125.

Kibe, K., Takahashi, M., Kameya, T., Urano, K., 2000b. Adsorption Rate Equation of Herbicides in Paddy Soils. J. Pestic. Sci., 25(3): 234-239.

Kibe, K., Takano, H., Kameya, T., Urano, K., 2000c. Estimation of Runoff Load of Simetryn from Paddy Field by a New Fate Model. J. Jpn. Soc. Water Environ., 23(6): 343-351 (in Japanese).

Klein, M., 1994. Evaluation and comparison of pesticide leaching models for registration purposes. results of simulations performed with the pesticide leaching model. J. Environ. Sci. Health A, 29(6): 1197-1209.

Klein, M. et al., 1997. Validation of the pesticide leaching model PELMO using lysimeter studies performed for registration. Chemosphere, 35(11): 2563-2587.

Kogan, M., Araya, M., Alister, C., 2012. Water and sediment dynamics of penoxsulam and molinate in paddy fields: field and lysimeter studies. Pest Manag. Sci., 68(3): 399-403.

Kondo, K. et al., 2017. Development and application of a dynamic in-river agrochemical fate and transport model for simulating behavior of rice herbicide in urbanizing catchment. Agric. Water Manag., 193: 102-115.

Kondo, K. et al., 2012. Probabilistic assessment of herbicide runoff from Japanese rice paddies: The effects of local meteorological conditions and site-specific water management. J. Pestic. Sci., 37(4): 312-322.

Kookana, R., Aylmore, G., G. Gerritse, R., 1992. Time-Dependent Sorption of Pesticides During Transport in Soils. Soil Sci., 154(3): 214-225.

Krause, P., Boyle, D.P., Bäse, F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci., 5: 89-97.

Kubo, N., Nakase, L.M., 1992. Numerical technique using interior boundary foropen channel unsteady flow computation. Proceedings of JICA-IPB 5th JointSeminar, Bogor, Indonesia: 207–220.

Kubo, N., Nakase, L.M., Itoh, R., Nakamura, R., 1993. Practical and Stable Calculation Method for Interior Boundary Conditions Applied to the Preissmann Implicit Scheme. Trans. of JSIDRE, 1993(168): 9-18 (in Japanese).

Kurogochi, S., 2003. Translocation and Metabolism of Pesticides in Rice Plants after Nursery Box Application. In: J. R. Coats, Yamamoto, H. (Eds.), Environmental Fate and Effects of Pesticides. ACS Symposium Series. American Chemical Society, Washington, DC, pp. 139-156.

La, N., Lamers, M., Nguyen, V.V., Streck, T., 2014. Modelling the fate of pesticides in paddy rice-fish pond farming systems in northern Vietnam. Pest Manag. Sci., 70(1): 70-9.

Larsbo, M., Jarvis, N., 2003. MACRO 5.0: a model of water flow and solute transport in macroporous soil: technical description. Department of Soil Sciences, Swedish University of Agricultural Sciences Uppsala.

Lazartigues, A. et al., 2011. Multiresidue method for the determination of 13 pesticides in three environmental matrices: water, sediments and fish muscle. Talanta, 85(3): 1500-1507.

Leistra, M., Van der Linden, A., Boesten, J., Tiktak, A., Van den Berg, F., 2001. PEARL model for pesticide behaviour and emissions in soil-plant systems: description of the processes in FOCUS PEARL v 1.1. 1, Alterra.

Link, W.A., Eaton, M.J., 2012. On thinning of chains in MCMC. Methods Ecol. Evol., 3(1): 112-115.

Liu, F., Hodges, B.R., 2014. Applying microprocessor analysis methods to river network modelling. Environ. Modell. Softw., 52: 234-252. Loos, M., Krauss, M., Fenner, K., 2012. Pesticide Nonextractable Residue Formation in Soil: Insights from Inverse Modeling of Degradation Time Series. Environ. Sci. Technol., 46(18): 9830-9837.

Luo, Y., 2011. Review and Evaluation of Pesticide Modeling Approaches in Rice Paddies. In: Department of Pesticide Regulation (Ed.). California Environmental Protection Agency, Sacramento, Ca.

Luo, Y., Spurlock, F., Gill, S., Goh, K.S., 2012. Modeling complexity in simulating pesticide fate in a rice paddy. Water. Res., 46(19): 6300-8.

Luo, Y. et al., 2011. Modeling Approaches for Pesticide Exposure Assessment in Rice Paddies, Pesticide Mitigation Strategies for Surface Water Quality. ACS Symposium Series. American Chemical Society, pp. 203-226.

Mackay, D., Leinonen, P.J., 1975. Rate of evaporation of low-solubility contaminants from water bodies to atmosphere. Environ. Sci. Technol., 9(13): 1178-1180.

MAFF.<http://www.maff.go.jp/j/seisan/gijutsuhasshin/attach/pdf/suitou-2.pdf> Accessed September 17, 2019 (in Japanese).

MAFF, 2007. Regarding data to be appended to applications for Registration of Agricultural Chemicals.<http://www.acis.famic.go.jp/eng/shinsei/13-3987.pdf> Accessed 21 March, 2017.

MAFF, 2012. Noyaku no kiso-chishiki (Basic knowledge of pesticides).<http://www.maff.go.jp/j/nouyaku/n_tisiki/> Accessed September 17, 2019 (in Japanese).

MAFF, 2016.<http://www.maff.go.jp/j/shokusan/export/e_kikaku/27report.html> Accessed September 17, 2019 (in Japanese).

MAFF, 2018. Statistics.<http://www.maff.go.jp/e/data/stat/index.html > Accessed September 17, 2019.

MAFF, 2019.<http://www.maff.go.jp/j/seisan/kankyo/hozen_type/> Accessed September 17, 2019 (in Japanese).

Maru, S., 1990. Outflow of Pesticides from a Paddy Lysimeter as Affected by the Water Solubility. J. Pestic. Sci., 15(3): 385-394 (in Japanese).

Matsui, Y. et al., 2005. Effect of uncertainties in agricultural working schedules and Monte-Carlo evaluation of the model input in basin-scale runoff model analysis of herbicides. Water Sci. Technol., 51(3-4): 329-37.

Matsui, Y. et al., 2002. Predicting pesticide concentrations in river water with a hydrologically calibrated basin-scale runoff model. Water Sci. Technol., 45(9): 141-8.

Matsui, Y., Narita, K., Inoue, T., Matsushita, T., 2006a. Investigating rice-farming pesticide concentrations in river water using a basin-scale runoff model with uncertain inputs. Trans ASABE, 49(6): 1723 - 1735 Matsui, Y., Narita, K., Inoue, T., Matsushita, T., 2006b. Screening level analysis for monitoring pesticide in river water using a hydrological diffuse pollution model with limited input data. Water Sci. Technol., 53(10): 173-181.

Matsui, Y., Narita, K., Inoue, T., Matsushita, T., 2007. Using precise data sets on farming and pesticide properties to verify a diffuse pollution hydrological model for predicting pesticide concentration. Water Sci. Technol., 56(1): 71-80.

McCall, A.-K., Palmitessa, R., Blumensaat, F., Morgenroth, E., Ort, C., 2017. Modeling in-sewer transformations at catchment scale – implications on drug consumption estimates in wastewater-based epidemiology. Water Res., 122: 655-668.

McKay, M.D., Beckman, R.J., Conover, W.J., 1979. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 21(2): 239-245.

Melesse, A.M., Graham, W.D., 2004. Storm Runoff Prediction Based on a Spatially Distributed Travel Time Method Utilizing Remote Sensing and GIS J. Am. Water Works Assoc. 40(4): 863-879.

Mertens, J., Kahl, G., Gottesbüren, B., Vanderborght, J., 2009. Inverse Modeling of Pesticide Leaching in Lysimeters: Local versus Global and Sequential Single-Objective versus Multiobjective Approaches Vadose Zone J., 8(3): 793-804.

Metz, M., Mitasova, H., Harmon, R.S., 2011. Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search. Hydrol. Earth Syst. Sci., 15(2): 667-678.

Miao, Z. et al., 2003a. Simulating Pesticide Leaching and Runoff in Rice Paddies with the RICEWQ–VADOFT Model. J. Environ. Qual., 32(6): 2189-2199.

Miao, Z. et al., 2003b. Prediction of the environmental concentration of pesticide in paddy field and surrounding surface water bodies. Paddy Water Environ., 1(3): 121-132.

Miao, Z., Trevisan, M., Capri, E., Padovani, L., Del Re, A.A., 2004. Uncertainty assessment of the model RICEWQ in northern Italy. J. Environ. Qual., 33(6): 2217-28.

MILT, 2007. River Administration in Japan. River Bureau of Ministry of Land, Infrastructure, Transport and Tourism, Japan.<https://www.mlit.go.jp/river/basic_info/english/pdf/RiverAdministrationInJ apan(e).pdf> Accessed August 27, 2019.

MILT, 2009. National Land Numerical Information Rivers Data. National Land Information Division, National Spatial Planning and Regional Policy Bureau, Ministry of Land, Infrastructure, Transport and Tourism of Japan.<http://nlftp.mlit.go.jp/ksj-e/gml/datalist/KsjTmplt-W05.html> Accessed August 27, 2019.

MILT, 2010. National Land Numerical Information Basin Mesh Data. National Land Information Division, National Spatial Planning and Regional Policy Bureau, Ministry of Land, Infrastructure, Transport and Tourism of Japan.<http://nlftp.mlit.go.jp/ksj/gmlold/meta/ksjshpgml-W12.html> Accessed August 27, 2019.

MILT, 2014. National Land Numerical Information Land Use Fragmented Mesh Data (raster data). National Land Information Division, National Spatial Planning and Regional Policy Bureau, Ministry of Land, Infrastructure, Transport and Tourism of Japan.<http://nlftp.mlit.go.jp/ksj-e/gml/datalist/KsjTmplt-L03-b_r.html> Accessed August 27, 2019.

MOE, 2000.<http://www.env.go.jp/policy/kihon_keikaku/plan/kakugi121222.html> Accessed September 17, 2019 (in Japanese).

MOE, 2004.<https://www.env.go.jp/water/dojo/noyaku/n_kentoukai/index.html (Accessed August, 2018)> Accessed September 17, 2019 (in Japanese).

MOE, 2009.<https://www.env.go.jp/water/dojo/noyaku/sppt.html> Accessed September 17, 2019 (in Japanese).

MOE, 2011.<https://www.env.go.jp/hourei/add/f013.pdf> Accessed September 17, 2019 (in Japanese).

MOE, 2018.<http://www.env.go.jp/water/dojo/noyaku/zanryutaisaku.html> Accessed September 17, 2019 (in Japanese).

Moriasi, D.N. et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50(3): 885-900.

Moriasi, D.N., Gitau, M.W., Pai, N., Daggupati, P., 2015. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE, 58(6).

Morinaka, H. et al., 1993. Changes in Concentrations of Active Ingredients of a Flowable and Granules Consisting of a Combination of Pyributicarb, Bromobutide and Benzofenap in Water of Paddy Fields. J. Weed Sci. Tech., 38(4): 275-281 (in Japanese).

Morohashi, M. et al., 2012. Behavior of Bromobutide in Paddy Water and Soil After Application. Bull. Environ. Contam. Toxicol., 88(4): 521-525.

Morrissey, C.A. et al., 2015. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ. Int., 74: 291-303.

Motobayashi, T., Genka, M., Khanh Phong, T., Watanabe, H., 2012. Effects of Formulation and Treatment Method of Imidacloprid in Nursery Boxes on Aquatic Insects Inhabiting Rice Paddy Fields. Jpn. J. Appl. Entomol. Z., 56(4): 169-172 (in Japanese).

Motoki, Y., Iwafune, T., Seike, N., Inao, K., Otani, T., 2016. Effect of Time-Dependent Sorption on the Dissipation of Water-Extractable Pesticides in Soils. J. Agric. Food Chem., 64(22): 4478-4486.

Motoki, Y., Iwafune, T., Seike, N., Otani, T., Asano, M., 2014. Effects of organic carbon quality on the sorption behavior of pesticides in Japanese soils. J. Pestic. Sci., 39(2): 105-114.

Mulligan, R.A., Redman, Z.C., Keener, M.R., Ball, D.B., Tjeerdema, R.S., 2016a. Photodegradation of clothianidin under simulated California rice field conditions. Pest Manag Sci, 72(7): 1322-7.

Mulligan, R.A. et al., 2016b. Aerobic versus Anaerobic Microbial Degradation of Clothianidin under Simulated California Rice Field Conditions. J. Agric. Food Chem., 64(38): 7059-67.

Muzik, I., 1996. Lumped Modeling and GIS in Flood Prediction. In: Singh, V.P., Fiorentino, M. (Eds.), Geographical Information Systems in Hydrology. Springer Netherlands, Dordrecht, pp. 269-301.

Nagai, T., 2008. Ecological risk assessment and management of pesticide. Journal of Resources and Environment, 44(12): 82-87 (in Japanese).

Nagai, T., Inao, K., Horio, T., 2008. Probabilistic ecological risk assessment of paddy herbicide in Japanese river waters using uncertainty analysis: A case study for simetryn. J. Pestic. Sci., 33(4): 393-402 (in Japanese).

Nakagiri, T., Watanabe, T., Horino, H., Maruyama, T., 2000. Analysis of sufficiency and reuse of irrigation water in the Kino River Basin-Analysis of irrigation water use by a Basin Hydrological Model (II)-. Trans. of JSIDRE, 2000(205): 35-42 (in Japanese).

Nakamura, K., Shiba, H., Hasegawa, H., 1983. Leaching of Several Herbicides with Water in Lysimeter Soils. J. Pestic. Sci., 8(1): 9-15 (in Japanese).

Nakano, Y., Yoshida, T., Inoue, T., 2004. A study on pesticide runoff from paddy fields to a river in rural region—2: development and application of a mathematical model. Water Res., 38(13): 3023-3030.

NARO, 2017. Japanese Soil Inventory. Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO).<https://soil-inventory.dc.affrc.go.jp/> Accessed August 27, 2019 (in Japanese).

Narushima, T., Sato, T., Goto, Y., Takahashi, Y., 2014. Pesticides in River and Tap Water in a Rice Production Area of Niigata, Japan. Water Air Soil Pollut., 225(12): 2229.

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — A discussion of principles. J. Hydrol., 10(3): 282-290.

Neitsch, S., Arnold, J., Srinivasan, R., 2002. Pesticides Fate and Transport Predicted by SWAT: Atrazine, Metolachlor and Trifluralin in the Sugar Creek Watershed. Final report submitted to Office of Pesticide Programs Washington, DC: USEPA.

Newhart, K., 2002. Rice Pesticide Use and Surface Water Monitoring 2002. California Department of Pesticide Regulation.

Nguyen, Q.K., Kawano, H., 1995. Simultaneous Solution for Flood Routing in Channel Networks. J. Hydraul. Eng., 121(10): 744-750.

Nhung, D.T., Phong, T.K., Watanabe, H., Iwafune, T., Thuyet, D.Q., 2009. Simulating the dissipation of two herbicides using micro paddy lysimeters. Chemosphere, 77(10): 1393-9.

Nolan, B.T., Dubus, I.G., Surdyk, N., 2009. A refined lack-of-fit statistic to calibrate pesticide fate models for responsive systems. Pest. Manag. Sci., 65(12): 1367-1377.

NRCS, 2011. Cross-Section Hydraulic Analyzer.<http://go.usa.gov/0Eo>.

OECD, 2000. Test No. 106: Adsorption -- Desorption Using a Batch Equilibrium Method. OECD Guidelines for the Testing of Chemicals, Section 1, OECD Publishing, Paris. OECD, 2002a. Test No. 307: Aerobic and Anaerobic Transformation in Soil. OECD Guidelines for the Testing of Chemicals, Section 3, OECD Publishing, Paris.

OECD, 2002b. Test No. 308: Aerobic and Anaerobic Transformation in Aquatic Sediment Systems. OECD Guidelines for the Testing of Chemicals, Section 3, OECD Publishing, Paris.

OECD, 2008. Test No. 316: Phototransformation of Chemicals in Water – Direct Photolysis. Ohkouchi, T., Tsuji, K., Kobara, Y., 2018. Chapter 12. In: Umetsu, N. (Ed.), Trend in Pesticide Discovery Research -Development of Safer and Environmentally Friendly Pesticides-. CMC Publishing CO.,LTD., Tokyo, Japan, pp. 243-279 (in Japanese).

Ok, J., Doan, N.H., Watanabe, H., Thuyet, D.Q., Boulange, J., 2012. Behavior of Butachlor and Pyrazosulfuron-ethyl in Paddy Water Using Micro Paddy Lysimeters under Different Temperature Conditions in Spring and Summer. Bull. Environ. Contam. Toxicol., 89(2): 306-311.

Ok, J. et al., 2015. Effect of Rice Husk Gasification Residue Application on Herbicide Behavior in Micro Paddy Lysimeter. Bull. Environ. Contam. Toxicol., 94(6): 791-795.

Paiva, R.C.D., Collischonn, W., Tucci, C.E.M., 2011. Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. J. Hydrol., 406(3): 170-181.

Parveen, S., Nakagoshi, N., Kohguchi, T., 2004. Trends in the Use of Agricultural Pesticides and the Environmental Risk-Reduction Status in Japan:An Evaluation of the Last 15 Years. Outlook on Agriculture, 33(3): 177-189.

Phong, T.K., Inoue, T., Yoshino, K., Hiramatsu, K., Nhung, D.T.T., 2012. Temporal trend of pesticide concentrations in the Chikugo River (Japan) with changes in environmental regulation and field infrastructure. Agric. Water Manag., 113: 96-104.

Phong, T.K., Nhung, D.T., Yamazaki, K., Takagi, K., Watanabe, H., 2008a. Simulated rainfall removal of tricyclazole sprayed on rice foliage. Bull. Environ. Contam. Toxicol., 80(5): 438-42.

Phong, T.K., Nhung, D.T., Yamazaki, K., Takagi, K., Watanabe, H., 2009. Behavior of sprayed tricyclazole in rice paddy lysimeters. Chemosphere, 74(8): 1085-9.

Phong, T.K., Vu, S.H., Ishihara, S., Hiramatsu, K., Watanabe, H., 2011. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 2: Model simulation for the herbicide pretilachlor. Pest Manag. Sci., 67(1): 70-76.

Phong, T.K. et al., 2008b. Excess water storage depth&mdash;a water management practice to control simetryn and thiobencarb runoff from paddy fields. J. Pestic. Sci., 33(2): 159-165.

Phong, T.K., Watanabe, H., Nishimura, T., Toyoda, K., Motobayashi, T., 2008c. Behavior of simetryn and thiobencarb in rice paddy lysimeters and the effect of excess water storage depth in controlling herbicide run-off. Weed Biol. Manag., 8(4): 243-249.

Phong, T.K., Yoshino, K., Hiramatsu, K., Harada, M., Inoue, T., 2010. Pesticide discharge and water management in a paddy catchment in Japan. Paddy Water Environ., 8(4): 361-369.

Pignatello, J.J., 1999. The Measurement and Interpretation of Sorption and Desorption Rates for Organic Compounds in Soil Media. Advances in Agronomy, 69: 1-73.

Pignatello, J.J., Xing, B., 1996. Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles. Environ. Sci. Technol., 30(1): 1-11.

Plummer, M., Best, N., Cowles, K., Vines, K., 2006. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News, 6: 7-11.

Price, W.L., 1977. A controlled random search procedure for global optimisation. Comput J, 20(4): 367-370.

Radke, M., Maier, M.P., 2014. Lessons learned from water/sediment-testing of pharmaceuticals. Water Res., 55: 63-73.

Richter, O., Diekkrüger, B., Nörtersheuser, P., 1996. Environmental fate modelling of pesticides: from the laboratory to the field scale. VCH, Weinheim, New York.

Ritter, A.M., Williams, W.M., 2008a. Chapter 9 - Higher Tier Exposure Assessments in Rice Paddy Areas: An American Perspective. In: Capri, E., Karpouzas, D. (Eds.), Pesticide Risk Assessment in Rice Paddies. Elsevier, Amsterdam, pp. 215-236.

Ritter, A.M., Williams, W.M., 2008b. Chapter 9 - Higher Tier Exposure Assessments in Rice Paddy Areas: An American Perspective A2 - Capri, Ettore. In: Karpouzas, D. (Ed.), Pesticide Risk Assessment in Rice Paddies. Elsevier, Amsterdam, pp. 215-236.

Ritz, C., Streibig, J.C., 2008. Grouped Data. In: Ritz, C., Streibig, J.C. (Eds.), Nonlinear Regression with R. Springer New York, New York, NY, pp. 109-131.

Sánchez-Bayo, F., Goka, K., Hayasaka, D., 2016. Contamination of the Aquatic Environment with Neonicotinoids and its Implication for Ecosystems. Front. Environ. Sci., 4: 71.

Sakamoto, N., Mukumoto, F., Manabe, A., 2018a. Chapter 1. In: Umetsu, N. (Ed.), Trend in Pesticide Discovery Research -Development of Safer and Environmentally Friendly Pesticides-. CMC Publishing CO.,LTD., Tokyo, Japan, pp. 1-17 (in Japanese).

Sakamoto, N., Mukumoto, F., Manabe, A., 2018b. Chapter 2. In: Umetsu, N. (Ed.), Trend in Pesticide Discovery Research -Development of Safer and Environmentally Friendly Pesticides-. CMC Publishing CO.,LTD., Tokyo, Japan, pp. 18-31 (in Japanese).

Sato, M., Uemura, H., Kosaka, K., Asami, M., Kamata, M., 2016. Survey of Pesticide Concentrations, Including Neonicotinoids, in the Sagami River, Its Tributaries and Tap Water. J. Jpn. Soc. Water Environ., 39(5): 153-162 (in Japanese).

Sayama, A., Miura, C., 2015. Runoff of pretilachlor applied before transplanting of rice plant by lysimeters. Jpn. J. Pestic. Sci, 40(2): 145-151 (in Japanese).

Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M., 2002. Box Models. In: Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M. (Eds.), Environmental Organic Chemistry. New York: Wiley, pp. 945-1003.

Shirato, H., Yoshiyuki, T., Hayakawa, Y., 2014. Legal system on pesticide registration in EU. Research report of agricultural chemicals, 6: 45-52 (in Japanese).

Soderquist, C.J., Bowers, J.B., Crosby, D.G., 1977. Dissipation of molinate in a rice field. J. Agric. Food Chem., 25(4): 940-945.

Soetaert, K., Herman, P.M.J., 2008. A Practical Guide to Ecological Modelling: Using R as a Simulation Platform. Springer Publishing Company, Incorporated, 372 pp.

Soetaert, K., Petzoldt, T., 2010a. Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME. 2010, 33(3): 28.

Soetaert, K., Petzoldt, T., 2010b. Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME. J Stat Softw, 33(3): 1-28.

Soetaert, K., Petzoldt, T., Setzer, R.W., 2010. Solving Differential Equations in R: Package deSolve. 2010, 33(9): 25.

Soulis, K.X., 2013. Development of a simplified grid cells ordering method facilitating GIS-based spatially distributed hydrological modeling. Comput. Geosci., 54: 160-163.

Sparks, T.C., Lorsbach, B.A., 2017. Perspectives on the agrochemical industry and agrochemical discovery. Pest Manag. Sci., 73(4): 672-677.

Suárez, L.A., 2005. PRZM-3, a model for predicting pesticide and nitrogen fate in the crop root and unsaturated soil zones: User's manual for release 3.12.2. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-05/111 (NTIS PB2006-101105).

Sudo, M., Goto, Y., Iwama, K., Hida, Y., 2018. Herbicide discharge from rice paddy fields by surface runoff and percolation flow: A case study in paddy fields in the Lake Biwa basin, Japan. J. Pestic. Sci., 43(1): 24-32.

Sudo, M., Goto, Y., Okajima, T., Horiuchi, R., Odani, H., 2012. Effect of percolation flow on herbicide loss from rice paddies. J. Pestic. Sci., 37(2): 140-147.

Sudo, M., Kunimatsu, T., Okubo, T., 2002. Concentration and loading of pesticide residues in Lake Biwa basin (Japan). Water Res., 36(1): 315-329.

Sugawara, M., 1961. On the analysis of runoff structure about several Japanese rivers. Japanese Journal of Geophysics, 2(4): 1-76.

Szymkiewicz, R., 2010. Numerical modeling in open channel hydraulics. Springer, Netherlands.

Takagi, K., Fajardo, F., Inao, K., Kitamura, Y., 1998. Predicting pesticide behavior in a lowland environment using computer simulation. Rev. Toxicol., 2(1): 269-286.

Takagi, K. et al., 2012. Fate and transport of bensulfuron-methyl and imazosulfuron in paddy fields: experiments and model simulation. Paddy Water Environ., 10(2): 139-151.

Takeshita, T., Noritake, K., 2001. Development and promotion of laborsaving application technology for paddy herbicides in Japan. Weed Biol. Manag., 1(1): 61-70.

Tanabe, A., Mitobe, H., Kawata, K., Yasuhara, A., Shibamoto, T., 2001. Seasonal and Spatial Studies on Pesticide Residues in Surface Waters of the Shinano River in Japan. J. Agric. Food Chem., 49(8): 3847-3852.

Tanaka, K., Endo, S., Kazano, H., 2000. Toxicity of insecticides to predators of rice planthoppers:Spiders, the mirid bug and the dryinid wasp. Appl. Entomol. Zool., 35(1): 177-187.

Tani, K., Matsui, Y., Iwao, K., Kamata, M., Matsushita, T., 2012. Selecting analytical target pesticides in monitoring: Sensitivity analysis and scoring. Water Res., 46(3): 741-749.

Ter Horst, M.M., Koelmans, A.A., 2016. Analyzing the Limitations and the Applicability Domain of Water-Sediment Transformation Tests like OECD 308. Environ. Sci. Technol., 50(19): 10335-10342.

Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review, 38(1): 55-94.

Thuyet, D.Q. et al., 2010. Micro paddy lysimeter for monitoring solute transport in paddy environment. Paddy Water Environ., 8(3): 235-245.

Thuyet, D.Q., Watanabe, H., Motobayashi, T., 2011a. Effect of formulations and treatment methods of nursery boxes applied with insecticide on the behavior of imidacloprid in rice paddy fields. J. Pestic. Sci., 36(1): 9-15.

Thuyet, D.Q., Watanabe, H., Takagi, K., Yamazaki, K., Nhung, D.T.T., 2012. Behavior of nursery-box-applied imidacloprid in micro paddy lysimeter. J. Pestic. Sci., 37(1): 20-27.

Thuyet, D.Q., Watanabe, H., Yamazaki, K., Takagi, K., 2011b. Photodegradation of imidacloprid and fipronil in rice-paddy water. Bull. Environ. Contam. Toxicol., 86(5): 548-53.

Tiktak, A. et al., 2000. Manual of FOCUS PEARL version 1.1.1, Handleiding van FOCUS PEARL versie1.1.1. Rijksinstituut voor Volksgezondheid en Milieu RIVM.

Tournebize, J., Watanabe, H., Takagi, K., Nishimura, T., 2006. The development of a coupled model (PCPF-SWMS) to simulate water flow and pollutant transport in Japanese paddy fields. Paddy Water Environ., 4(1): 39-51.

Tu, L.H., Boulange, J., Iwafune, T., Yadav, I.C., Watanabe, H., 2018. Improvement and application of the PCPF-1

SWAT2012 model for predicting pesticide transport: a case study of the Sakura River watershed. Pest. Manag. Sci., 74(11): 2520-2529.

Turner, J.A., 2018. The Pesticide Manual 18th Edition. British Crop Production Council (BCPC), Hampshire, UK.

U.S. EPA, 1992. Guidelines For Exposure Assessment. U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, DC, EPA/600/Z-92/001.

U.S. EPA, 2011. Exposure Factors Handbook 2011 Edition (Final Report), U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F.

U.S. EPA, 2013.<https://www.epa.gov/pollinator-protection/new-labeling-neonicotinoid- pesticides>, August 5,2019.

Uchida, M., Nishizawa, H., Suzuki, T., 1982. Hydrophobicity of Buprofezin and Flutolanil in Relation to Their Soil Adsorption and Mobility in Rice Plants. J. Pestic. Sci., 7(3): 397-400.

Ueji, M., 2004. In: Pesticide Science Society of Japan et al. (Eds.), Frontiers of Environmental Pesticide Science. Soft Science, Inc, Tokyo, Japan, pp. 223-338 (in Japanese).

Ueji, M., Inao, K., 2001. Rice paddy field herbicides and their effects on the environment and ecosystems. Weed Biol. Manag., 1(1): 71-79.

Unggoon, W., Kubo, N., Tanji, H., 2009. Performance diagnosis of Mae Lao Irrigation Scheme in Thailand (I) Development of Unsteady Irrigation Water Distribution and Consumption model. Paddy Water Environ., 8(1): 1-13.

van Beinum, W., Beulke, S., Fryer, C., Brown, C., 2006. Lysimeter Experiment To Investigate the Potential Influence of Diffusion-Limited Sorption on Pesticide Availability for Leaching. J. Agric. Food Chem., 54(24): 9152-9159.

Villaverde, J., van Beinum, W., Beulke, S., Brown, C.D., 2009. The Kinetics of Sorption by Retarded Diffusion into Soil Aggregate Pores. Environ. Sci. Technol., 43(21): 8227-8232.

Vu, S.H., Watanabe, H., Takagi, K., 2005. Application of FAO-56 for evaluating evapotranspiration in simulation of pollutant runoff from paddy rice field in Japan. Agric. Water Manag., 76(3): 195-210.

Warren, N., Allan, I.J., Carter, J.E., House, W.A., Parker, A., 2003. Pesticides and other micro-organic contaminants in freshwater sedimentary environments—a review. Appl. Geochem., 18(2): 159-194.

Watanabe, H. et al., 2008. Chapter 8 - Pesticide Exposure Assessment in Rice Paddy Areas: A Japanese Perspective A2 - Capri, Ettore. In: Karpouzas, D. (Ed.), Pesticide Risk Assessment in Rice Paddies. Elsevier, Amsterdam, pp. 167-214.

Watanabe, H., Kakegawa, Y., Hong Vu, S., 2006a. Evaluation of the management practice for controlling herbicide runoff from paddy fields using intermittent and spillover-irrigation schemes. Paddy Water Environ., 4: 21-28.

Watanabe, H. et al., 2007. Effect of water management practice on pesticide behavior in paddy water. Agric. Water Manag., 88(1): 132-140.

Watanabe, H., Takagi, K., 2000a. Prediction of pretilachlor concentrations in paddy water and paddy surface soil by PCPF-1 model and the model application for controlling pesticide losses from paddy fields. Trans. of JSIDRE, 2000(209): 641-648 (in Japanese).

Watanabe, H., Takagi, K., 2000b. A Simulation Model for Predicting Pesticide Concentrations in Paddy Water and Surface Soil II. Model Validation and Application. Environ. Technol., 21(12): 1393-1404.

Watanabe, H., Takagi, K., 2000c. A Simulation Model for Predicting Pesticide Concentrations in Paddy Water and Surface Soil. I. Model Development. Environ. Technol., 21(12): 1379-1391.

Watanabe, H., Takagi, K., Vu, S.H., 2006b. Simulation of mefenacet concentrations in paddy fields by an improved PCPF‐1 model. Pest Manag. Sci., 62(1): 20-29.

Watanabe, S., Watanabe, S., Ito, K., 1984. Effluence of Herbicides (CNP, Molinate, Simetryne) to Watercourse and Their Fates in Soil at a Model Paddy Field. J. Pestic. Sci., 9(1): 33-38.

Williams, W.M., Ritter, A.M., Zdinak, C., E. , Cheplick, J.M., 2011. RICEWQ: Pesticide runoff model for rice crops: User's manual and program documenation, version 1.9.0, Waterborne Environmental, Inc., Leesburg, VA.

Williams, W.M., Zdinak, C., E. , Ritter, A.M., Cheplick, J.M., Singh, P., 2004. RIVWQ: Chemical Transport Model For Riverine Environment: User's manual and program documenation, version 2.0.2, Waterborne Environmental, Inc., Leesburg, VA.

Wu, Y., Liu, S., 2012. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package Flexible Modeling Environment (FME): SWAT as an example. Environ. Modell. Softw., 31: 99-109.

Wu, Y., Liu, S., Huang, Z., Yan, W., 2014. Parameter optimization, sensitivity, and uncertainty analysis of an ecosystem model at a forest flux tower site in the United States. J. Adv. Model Earth Syst., 6(2): 405-419.

Yachi, S., Nagai, T., Inao, K., 2017. Analysis of region-specific predicted environmental concentration of paddy pesticides at 350 river flow monitoring sites. Jpn. J. Pestic. Sci., 42(1): 1-9 (in Japanese).

Yi, X., Lu, Y., 2006. Residues and dynamics of probenazole in rice field ecosystem. Chemosphere, 65(4): 639-43.

Yokota, T., 2014. Regisration of Plant Protection Products in EU-Regulation (EC) No.1107/2009-. Plant Protection, 68(3): 117-121.

Yoshida, K., Kubo, N., Sagara, Y., Shimada, M., 2000. Flood Routing Model for Drainage Analysis in Natural River Watershed A Case Study in Ciliwung River, Indonesia. Trans. of JSIDRE, 2000(210): 723-728,a1. Young, D.F., 2012. Development and Evaluation of a Regulatory Model for Pesticides in Flooded Applications. Environ. Model Assess., 17(5): 515-525.

Yu, C.-W., Liu, F., Hodges, B.R., 2017. Consistent initial conditions for the Saint-Venant equations in river network modeling. Hydrol. earth syst. sci., 21(9): 4959-4972.

Zambrano-Bigiarini, M., 2014. hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series, R package version 0.3-8. https://CRAN.R-project.org/package=hydroGOF.

Zambrano-Bigiarini, M., 2017. hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series, R package version 0.3-10 https://CRAN.R-project.org/package=hydroGOF [accessed 24 October 2018].

Zhang, P., Ren, C., Sun, H., Min, L., 2018. Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms. Sci. Total Environ., 615: 59-69.

Zhu, A. et al., 2015. A novel protocol for model calibration in biological wastewater treatment. Sci. Rep., 5: 8493-8493.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る