リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「GSK3 inhibitor enhances gemtuzumab ozogamicin-induced apoptosis in primary human leukemia cells by overcoming multiple mechanisms of resistance」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

GSK3 inhibitor enhances gemtuzumab ozogamicin-induced apoptosis in primary human leukemia cells by overcoming multiple mechanisms of resistance

Inase, Aki Maimaitili, Yimamu Kimbara, Shiro Mizutani, Yu Miyata, Yoshiharu Ohata, Shinya Matsumoto, Hisayuki Kitao, Akihito Sakai, Rina Kawaguchi, Koji Higashime, Ako Nagao, Shigeki Kurata, Keiji Goto, Hideaki Kawamoto, Shinichiro Yakushijin, Kimikazu Minami, Hironobu Matsuoka, Hiroshi 神戸大学

2023.02

概要

In acute myeloid leukemia (AML), the heterogeneity of genetic and epigenetic characteristics makes treatment difficult. The prognosis for AML is therefore poor, and there is an urgent need for new treatments for this condition. Gemtuzumab ozogamicin (GO), the first antibody-drug conjugate (ADC), targets the CD33 antigen expressed in over 90% of AML cases. GO therefore has the potential to counter the heterogeneity of AML patients. However, a major clinical problem is that drug resistance to GO diminishes its effect over time. Here, we report that the inhibition of glycogen synthase kinase 3 (GSK3) alone overcomes several forms of GO resistance at concentrations without antileukemic effects. The GSK3 inhibitors tested significantly enhanced the cytotoxic effect of GO in AML cell lines. We elucidated four mechanisms of enhancement: (1) increased expression of CD33, the target antigen of GO; (2) activation of a lysosomal function essential for hydrolysis of the GO linker; (3) reduced expression of MDR1 that eliminates calicheamicin, the payload of GO; and (4) reduced expression of the anti-apoptotic factor Bcl-2. A similar combination effect was observed against patient-derived primary AML cells. Combining GO with GSK3 inhibitors may be efficacious in treating heterogeneous AML.

この論文で使われている画像

参考文献

patients who suffer from severe toxicity at standard GO doses. It is also

1. Tallman MS, Wang ES, Altman JK, Appelbaum FR, Bhatt VR, Bixby D,

et al. Acute myeloid leukemia, version 3.2019, NCCN clinical practice

guidelines in oncology. J Natl Compr Canc Netw. 2019;17(6):721–49.

2. National Cancer Institute. SEER cancer stat facts: acute myeloid

leukemia (AML). Bethesda, MD: National Cancer Institute. https://

seer.cancer.gov/statfacts/html/amyl.html

3. Sarkozy C, Gardin C, Gachard N, Merabet F, Turlure P, Malfuson JV,

et al. Outcome of older patients with acute myeloid leukemia in first

relapse. Am J Hematol. 2013;88(9):758–64.

4. Quek L, David MD, Kennedy A, Metzner M, Amatangelo M, Shih A,

et al. Clonal heterogeneity of acute myeloid leukemia treated with the

IDH2 inhibitor enasidenib. Nature Medicine. 2018;24(8):1167–77.

5. van der Velden VHJ, te Marvelde JG, Hoogeveen PG, Bernstein ID,

Houtsmuller AB, Berger MS, et al. Targeting of the CD33-calicheamicin

immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in

vivo and in vitro saturation and internalization by leukemic and normal

myeloid cells. Blood. 2001;97(10):3197–204.

6. Hamann PR, Hinman LM, Beyer CF, Lindh D, Upeslacis J, Flowers DA,

et al. An anti-CD33 antibody−calicheamicin conjugate for treatment

of acute myeloid leukemia. Choice of Linker. Bioconjugate Chemistry.

2002;13(1):40–6.

7. Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb

R, et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33

antibody-calicheamicin conjugate for treatment of acute myeloid

leukemia. Bioconjug Chem. 2002;13(1):47–58.

8. Elmroth K, Nygren J, Mårtensson S, Ismail IH, Hammarsten O. Cleavage of cellular DNA by calicheamicin γ1. DNA Repair. 2003;2(4):363–

74.

9. Linenberger ML. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia.

2005;19(2):176–82.

10. Castaigne S, Pautas C, Terré C, Raffoux E, Bordessoule D, Bastie JN,

et al. Effect of gemtuzumab ozogamicin on survival of adult patients

with de-novo acute myeloid leukaemia (ALFA-0701): a randomised,

open-label, phase 3 study. Lancet. 2012;379(9825):1508–16.

11. Hills RK, Castaigne S, Appelbaum FR, Delaunay J, Petersdorf S, Othus

M, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of

individual patient data from randomised controlled trials. The Lancet

Oncology. 2014;15(9):986–96.

12. Amadori S, Suciu S, Selleslag D, Aversa F, Gaidano G, Musso M, et al.

Gemtuzumab ozogamicin versus best supportive care in older patients

with newly diagnosed acute myeloid leukemia unsuitable for intensive

chemotherapy: results of the randomized phase III EORTC-GIMEMA

AML-19 trial. Journal of Clinical Oncology. 2016;34(9):972–9.

13. Ali S, Dunmore HM, Karres D, Hay JL, Salmonsson T, Gisselbrecht

C, et al. The EMA review of mylotarg (gemtuzumab ozogamicin) for the treatment of acute myeloid leukemia. The Oncologist.

2019;24(5):e171–e9.

14. Godwin CD, Gale RP, Walter RB. Gemtuzumab ozogamicin in acute

myeloid leukemia. Leukemia. 2017;31(9):1855–68.

currently used in combination with daunorubicin and cytarabine, but

replacing these with a less toxic GSK3 inhibitor may produce similar or

stronger effects while reducing side effects.

In addition, resistance, which is a major problem in GO treatment,

may be overcome by using it in combination with a GSK3 inhibitor.

Among attempts to overcome ADC resistance, improvements in ADC

linkers and payloads have been the most commonly used, and have

shown the greatest success [18, 48]. Further, attempts are being made

to overcome the ADC resistance mechanism itself with other drugs. For

example, MDR-1 inhibitors can be expected to increase the intracellular concentration of payload [49]. Also, HSP90 inhibitors are known to

block endosomal recycling and are expected to increase trafficking of

Her2 and antibody complexes [50]. Accordingly, combinations of several ADCs with MDR-1 inhibitors or HSP90 inhibitors are expected

to show clinical efficacy. Of concern, however, some agents, such as

MDR-1 inhibitors and Bcl-2 inhibitors, can counter only one mode of

resistance, limiting their effectiveness. However, as our present findings show, combination with GSK3 inhibitors would increase the range

of patients who could benefit. Combination therapy may also be effective with other ADCs having lysosomally degradable linkers and similar

mechanisms of resistance against the drug payload.

AUTHOR CONTRIBUTIONS

AI designed and performed experiments, analyzed and interpreted the

data, and wrote the manuscript. YM, SK, HG, KK, SK, KY, HM, and HM

provided critical feedback and support. YM, SK, YM, YM, SO, HM, AK,

RS, KK, AH, SN, HG, KK, SK, and KY collected patient samples and data.

HM supervised the project. All authors reviewed the manuscript and

approved its final version.

ACKNOWLEDGMENTS

The authors sincerely thank the patients for their participation. They

also thank Dr. Yosuke Minami and Dr. Hideki Nakakuma for their valuable contribution and the many colleagues who read early drafts of

the manuscript and provided critical comments and suggestions. This

study was supported by research funding from Takeda Pharmaceutical

Company, Daiichi-Sankyo, Sysmex Corporation.

CONFLICT OF INTEREST

HM has a COI with Pfizer (honoraria). All other authors declare no

conflict of interest with the work presented in this study.

26886146, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/jha2.600 by Kobe University, Wiley Online Library on [12/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

162

15. Sievers EL, Larson RA, Stadtmauer EA, Estey E, Löwenberg B, Dombret

H, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with

CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol.

2001;19(13):3244–54.

16. Selby C, Yacko LR, Glode AE. Gemtuzumab ozogamicin: back again. J

Adv Pract Oncol. 2019;10(1):68–82.

17. Molica M, Perrone S, Mazzone C, Niscola P, Cesini L, Abruzzese E,

et al. CD33 expression and gentuzumab ozogamicin in acute myeloid

leukemia: two sides of the same coin. Cancers. 2021;13(13):3214.

18. Collins DM, Bossenmaier B, Kollmorgen G, Niederfellner G.

Acquired resistance to antibody-drug conjugates. Cancers (Basel).

2019;11(3):394.

19. Maimaitili Y, Inase A, Miyata Y, Kitao A, Mizutani Y, Kakiuchi S, et al.

An mTORC1/2 kinase inhibitor enhances the cytotoxicity of gemtuzumab ozogamicin by activation of lysosomal function. Leuk Res.

2018;74:68–74.

20. Mizutani Y, Inase A, Maimaitili Y, Miyata Y, Kitao A, Matsumoto H, et al.

An mTORC1/2 dual inhibitor, AZD2014, acts as a lysosomal function

activator and enhances gemtuzumab ozogamicin-induced apoptosis in primary human leukemia cells. Int J Hematol. 2019;110(4):

490–9.

21. Klco JM, Spencer DH, Lamprecht TL, Sarkaria SM, Wylie T, Magrini V,

et al. Genomic impact of transient low-dose decitabine treatment on

primary AML cells. Blood. 2013;121(9):1633–43.

22. Weir MC, Hellwig S, Tan L, Liu Y, Gray NS, Smithgall TE. Dual inhibition

of Fes and Flt3 tyrosine kinases potently inhibits Flt3-ITD+ AML cell

growth. PLoS One. 2017;12(7):e0181178.

23. Foucquier J, Guedj M. Analysis of drug combinations: current

methodological landscape. Pharmacology research & perspectives.

2015;3(3):e00149.

24. Walter RB, Raden BW, Kamikura DM, Cooper JA, Bernstein ID.

Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity. Blood.

2005;105(3):1295–302.

25. Olombel G, Guerin E, Guy J, Perrot J-Y, Dumezy F, de Labarthe A,

et al. The level of blast CD33 expression positively impacts the effect

of gemtuzumab ozogamicin in patients with acute myeloid leukemia.

Blood. 2016;127(17):2157–60.

26. Azoulay-Alfaguter I, Elya R, Avrahami L, Katz A, Eldar-Finkelman

H. Combined regulation of mTORC1 and lysosomal acidification by

GSK-3 suppresses autophagy and contributes to cancer cell growth.

Oncogene. 2015;34(35):4613–23.

27. Cianfriglia M, Mallano A, Ascione A, Dupuis ML. Multidrug transporter proteins and cellular factors involved in free and mAb linked

calicheamicin-gamma1 (gentuzumab ozogamicin, GO) resistance and

in the selection of GO resistant variants of the HL60 AML cell line. Int

J Oncol. 2010;36(6):1513–20.

28. Walter RB, Gooley TA, van der Velden VH, Loken MR, van Dongen

JJ, Flowers DA, et al. CD33 expression and P-glycoprotein-mediated

drug efflux inversely correlate and predict clinical outcome in patients

with acute myeloid leukemia treated with gemtuzumab ozogamicin

monotherapy. Blood. 2007;109(10):4168–70.

29. Jawad M, Seedhouse C, Mony U, Grundy M, Russell NH, Pallis M. Analysis of factors that affect in vitro chemosensitivity of leukaemic stem

and progenitor cells to gemtuzumab ozogamicin (Mylotarg) in acute

myeloid leukaemia. Leukemia. 2010;24(1):74–80.

30. Castaigne S, Pautas C, Terré C, Raffoux E, Bordessoule D, Bastie JN,

et al. Effect of gemtuzumab ozogamicin on survival of adult patients

with de-novo acute myeloid leukaemia (ALFA-0701): a randomised,

open-label, phase 3 study. Lancet. 2012;379(9825):1508–16.

31. Azoulay-Alfaguter I, Elya R, Avrahami L, Katz A, Eldar-Finkelman

H. Combined regulation of mTORC1 and lysosomal acidification by

GSK-3 suppresses autophagy and contributes to cancer cell growth.

Oncogene. 2015;34(35):4613–23.

163

32. Marchand B, Arsenault D, Raymond-Fleury A, Boisvert F-M, Boucher

M-J. Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells. Journal of

Biological Chemistry. 2015;290(9):5592–605.

33. Li Y, Xu M, Ding X, Yan C, Song Z, Chen L, et al. Protein kinase C controls

lysosome biogenesis independently of mTORC1. Nature Cell Biology.

2016;18(10):1065–77.

34. Rethineswaran VK, Kim DY, Kim Y-J, Jang W, Ji ST, Van LTH, et al.

CHIR99021 augmented the function of late endothelial progenitor

cells by preventing replicative senescence. International Journal of

Molecular Sciences. 2021;22(9):4796.

35. Yang C, Wang X. Lysosome biogenesis: regulation and functions.

Journal of Cell Biology. 2021;220(6):e202102001.

36. Puertollano R, Ferguson SM, Brugarolas J, Ballabio A. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. The EMBO Journal. 2018;37(11):

e98804.

37. Paquette M, El-Houjeiri L, Pause A. mTOR pathways in cancer and

autophagy. Cancers. 2018;10(1):18.

38. Walter RB, Raden BW, Hong TC, Flowers DA, Bernstein ID,

Linenberger ML. Multidrug resistance protein attenuates gemtuzumab ozogamicin-induced cytotoxicity in acute myeloid leukemia

cells. Blood. 2003;102(4):1466–73.

39. Cowan AJ, Laszlo GS, Estey EH, Walter RB. Antibody-based therapy

of acute myeloid leukemia with gemtuzumab ozogamicin. Front Biosci

(Landmark Ed). 2013;18:1311–34.

40. Liang C, Wang Z, Li Y-Y, Yu B-H, Zhang F, Li H-Y. miR-33a suppresses the nuclear translocation of β-catenin to enhance gemcitabine sensitivity in human pancreatic cancer cells. Tumor Biology.

2015;36(12):9395–403.

41. Katoh M. Multi‑layered prevention and treatment of chronic

inflammation, organ fibrosis and cancer associated with canonical WNT/β‑catenin signaling activation (Review). Int J Mol Med.

2018;42(2):713–25.

42. Corrêa S, Binato R, Du Rocher B, Castelo-Branco MTL, Pizzatti L,

Abdelhay E. Wnt/β-catenin pathway regulates ABCB1 transcription in

chronic myeloid leukemia. BMC Cancer. 2012;12(1):303.

43. Ougolkov AV, Fernandez-Zapico ME, Savoy DN, Urrutia RA, Billadeau

DD. Glycogen synthase kinase-3β participates in nuclear factor κB–

mediated gene transcription and cell survival in pancreatic cancer

cells. Cancer Research. 2005;65(6):2076–81.

44. Ougolkov AV, Bone ND, Fernandez-Zapico ME, Kay NE, Billadeau DD.

Inhibition of glycogen synthase kinase-3 activity leads to epigenetic

silencing of nuclear factor κB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood. 2007;110(2):

735–42.

45. Ignatz-Hoover JJ, Wang V, Mackowski NM, Roe AJ, Ghansah IK,

Ueda M, et al. Aberrant GSK3β nuclear localization promotes AML

growth and drug resistance. Blood Advances. 2018;2(21):2890–

903.

46. Ehninger A, Kramer M, Röllig C, Thiede C, Bornhäuser M, von

Bonin M, et al. Distribution and levels of cell surface expression of

CD33 and CD123 in acute myeloid leukemia. Blood Cancer Journal.

2014;4(6):e218.

47. Rizzieri DA, Cooley S, Odenike O, Moonan L, Chow KH, Jackson K,

et al. An open-label phase 2 study of glycogen synthase kinase-3

inhibitor LY2090314 in patients with acute leukemia. Leuk Lymphoma.

2016;57(8):1800–6.

48. García-Alonso S, Ocaña A, Pandiella A. Resistance to antibody–drug

conjugates. Cancer Research. 2018;78(9):2159–65.

49. Chen R, Herrera AF, Hou J, Chen L, Wu J, Guo Y, et al. Inhibition of MDR1 overcomes resistance to brentuximab vedotin in

hodgkin lymphoma. Clinical Cancer Research. 2020;26(5):1034–

44.

26886146, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/jha2.600 by Kobe University, Wiley Online Library on [12/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

INASE ET AL .

50. McCombs JR, Chang HP, Shah DK, Owen SC. Antibody-drug conjugate

and free geldanamycin combination therapy enhances anti-cancer

efficacy. International Journal of Pharmaceutics. 2021;610:121272.

INASE ET AL .

How to cite this article: Inase A, Maimaitili Y, Kimbara S,

Mizutani Y, Miyata Y, Ohata S, et al. GSK3 inhibitor enhances

gemtuzumab ozogamicin-induced apoptosis in primary human

leukemia cells by overcoming multiple mechanisms of

SUPPORTING INFORMATION

resistance. eJHaem. 2023;4:153–164.

Additional supporting information can be found online in the Support-

https://doi.org/10.1002/jha2.600

ing Information section at the end of this article.

26886146, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/jha2.600 by Kobe University, Wiley Online Library on [12/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

164

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る