リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「磁気熱電効果を用いた金属ナノ構造における熱輸送に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

磁気熱電効果を用いた金属ナノ構造における熱輸送に関する研究

エムディ, カムルザマン MD., KAMRUZZAMAN 九州大学

2021.09.24

概要

Recent development of nano-fabrication techniques enables to realize functional electronic devices with the lateral dimension down to nano-meter scale. In the operation of such nano sized devices, understanding and controlling the heat transfer is an important issue because a small cross section produces a significant Joule heating effect. Since the characteristic lengths such as the mean free path and phase coherent length are comparable to the device dimension, the heat transport in nanostructured systems may be different from the bulk state and its combination. On the other hand, In the field of spintronics, in addition to the intriguing spin-dependent transports, various conversion phenomena between spin and heat have been reported recently, and a new research field has been emerged named as spincaloritronics. Therefore, it is essential to deepen understanding the heat transfer in nanospintronic devices for manipulating the heat as well as for developing spincaloritronics. In this thesis, we studied heat transports in various ferromagnetic/nonmagnetic metal hybrid structures by using unique magneto-thermoelectric effects.

First, the spatial temperature distribution in a laterally configured nanostructure based on GMR nanowire has been investigated. A large thermal spin valve effect enables us to distinguish the flowing direction of the heat in the GMR nanowire. We find that the heat flow from the substrate is significant. Second, a temperature distribution in a ferromagnetic nanowire has been investigated by using various magneto-thermoelectric effects. The combination between the anisotropic magentoSeebeck effect and anomalous Nernst effect enables us to understand a three-dimension temperature gradient in a ferromagnetic nanowire precisely. We find that the transverse heat flow is a significant contribution on the field dependence of the Seebeck voltage. Finally, temperature dependence of the thermal spin valve effect and anisotropic magneto-Seebeck effect have been investigated. We find that the signs of the voltage changes were reversed at specific temperatures. Possible mechanism has been discussed in order to explain the unique signatures.

In summary, various thermoelectric effects in laterally configured nano-sized spintronic devices have been studied. By the optimization of the device structures, enhanced thermal spin valve version of the GMR effect, anisotropic magneto-Seebeck effect and anomalous Nernst effect have been obtained. Multiple ways in which heat interacts with spin and the interplay of such effects enable us to evaluate the heat distribution. These demonstration paves the way for the precise analysis of the heat flow in nano-structured electronic devices.

この論文で使われている画像

参考文献

[1] G Chen and Ali Shakouri. Heat transfer in nanostructures for solid-state energy conversion. J. Heat Transfer, 124(2):242–252, 2002.

[2] David G Cahill, Wayne K Ford, Kenneth E Goodson, Gerald D Mahan, Arun Majumdar, Humphrey J Maris, Roberto Merlin, and Simon R Phillpot. Nanoscale thermal transport. Journal of applied physics, 93(2):793–818, 2003.

[3] David G Cahill, Paul V Braun, Gang Chen, David R Clarke, Shanhui Fan, Ken- neth E Goodson, Pawel Keblinski, William P King, Gerald D Mahan, Arun Ma- jumdar, et al. Nanoscale thermal transport. ii. 2003–2012. Applied physics reviews, 1(1):011305, 2014.

[4] K Uchida, S Takahashi, K Harii, J Ieda, W Koshibae, Kazuya Ando, S Maekawa, and E Saitoh. Observation of the spin seebeck effect. Nature, 455(7214):778–781, 2008.

[5] J Flipse, FL Bakker, A Slachter, FK Dejene, and BJ Van Wees. Direct observation of the spin-dependent peltier effect. Nature nanotechnology, 7(3):166–168, 2012.

[6] J Flipse, FK Dejene, D Wagenaar, GEW Bauer, J Ben Youssef, and BJ Van Wees. Observation of the spin peltier effect for magnetic insulators. Physical review letters, 113(2):027601, 2014.

[7] Sibylle Meyer, Y-T Chen, Sebastian Wimmer, Matthias Althammer, Tobias Wimmer, Richard Schlitz, Stephan Geprägs, Hans Huebl, Diemo Ködderitzsch, H Ebert, et al. Observation of the spin nernst effect. Nature materials, 16(10):977– 981, 2017.

[8] Abraham Slachter, Frank Lennart Bakker, Jean-Paul Adam, and Bart Jan van Wees. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Physics, 6(11):879–882, 2010.

[9] Laurent Gravier, Santiago Serrano-Guisan, Francois Reuse, and J-Ph Ansermet. Spin-dependent peltier effect of perpendicular currents in multilayered nanowires. Physical Review B, 73(5):052410, 2006.

[10] Marvin Walter, Jakob Walowski, Vladyslav Zbarsky, Markus Münzenberg, Markus Schäfers, Daniel Ebke, Günter Reiss, Andy Thomas, Patrick Peretzki, Michael Seibt, et al. Seebeck effect in magnetic tunnel junctions. Nature materials, 10(10):742–746, 2011.

[11] Fasil Kidane Dejene, J Flipse, and BJ Van Wees. Spin-dependent seebeck co- efficients of ni 80 fe 20 and co in nanopillar spin valves. Physical Review B, 86(2):024436, 2012.

[12] J Shan, Fasil Kidane Dejene, Johannes Christian Leutenantsmeyer, J Flipse, Markus Münzenberg, and BJ Van Wees. Comparison of the magneto-peltier and magneto-seebeck effects in magnetic tunnel junctions. Physical Review B, 92(2):020414, 2015.

[13] Mark Johnson and RH Silsbee. Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Physical Review B, 35(10):4959–4972, 1987.

[14] L Gravier, a Fábián, a Rudolf, a Cachin, J.-E Wegrowe, and J.-Ph Ansermet. Spin- dependent thermopower in Co/Cu multilayer nanowires. Journal of Magnetism and Magnetic Materials, 271(2-3):153–158, may 2004.

[15] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh. Observation of the spin Seebeck effect. Nature, 455(7214):778–781, 2008.

[16] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E.W. Bauer, S. Maekawa, and E. Saitoh. Spin Seebeck insulator. Nature Materials, 2010.

[17] C. M. Jaworski, J. Yang, S. MacK, D. D. Awschalom, J. P. Heremans, and R. C. Myers. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nature Materials, 9(11):898–903, 2010.

[18] A. Slachter, F. L. Bakker, J. P. Adam, and B. J. Van Wees. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Physics, 6(11):879–882, 2010.

[19] Shaojie Hu, Hiroyoshi Itoh, and Takashi Kimura. Efficient thermal spin injection using CoFeAl nanowire. NPG Asia Materials, 6(9):e127, 2014.

[20] S. Meyer, Y. T. Chen, S. Wimmer, M. Althammer, T. Wimmer, R. Schlitz, S. Geprags, H. Huebl, D. Kodderitzsch, H. Ebert, G. E.W. Bauer, R. Gross, and S. T.B. Goennenwein. Observation of the spin Nernst effect. Nature Materials, 16(10):97–981, 2017.

[21] Abraham Slachter, Frank Lennart Bakker, and Bart Jan van Wees. Anomalous nernst and anisotropic magnetoresistive heating in a lateral spin valve. Physical Review B, 84(2):020412, 2011.

[22] A. D. Avery, M. R. Pufall, and B. L. Zink. Observation of the Planar Nernst Effect in Permalloy and Nickel Thin Films with In-Plane Thermal Gradients. Physical Review Letters, 109(19):196602, 2012.

[23] Judith Kimling, Theo Gerhardt, André Kobs, Andreas Vogel, Sebastian Wintz, Mi-Young Im, Peter Fischer, Hans Peter Oepen, Ulrich Merkt, and Guido Meier. Tuning of the nucleation field in nanowires with perpendicular magnetic anisotropy. Journal of Applied Physics, 113(16):163902, 2013.

[24] Shaojie Hu and Takashi Kimura. Anomalous Nernst-Ettingshausen effect in non- local spin valve measurement under high-bias current injection. Physical Review B, 87(1):014424, 2013.

[25] Melvin Cutler and Nevill Francis Mott. Observation of anderson localization in an electron gas. Physical Review, 181(3):1336, 1969.

[26] Gustav Heinrich Wiedemann. Ueber die wärme-leitungsfähigkeit der metalle. Number 222. Adademische verlagsgessellschaft mbh, 1902.

[27] A Barthelemy, MN Baibich, JM Broto, R Cabanel, G Creuzet, P Etienne, A Fert, A Friederich, S Lequien, F Nguyen Van Dau, et al. Giant magnetoresistance of (001) fe/(001) cr superlattices. MRS Online Proceedings Library (OPL), 151, 1989.

[28] Grünberg Binasch, Peter Grünberg, F Saurenbach, and W Zinn. Enhanced mag- netoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical review B, 39(7):4828, 1989.

[29] William Thomson. Xix. on the electro-dynamic qualities of metals:—effects of magnetization on the electric conductivity of nickel and of iron. Proceedings of the Royal Society of London, (8):546–550, 1857.

[30] E De Ranieri, AW Rushforth, K Vy`borny`, U Rana, E Ahmad, RP Campion, CT Foxon, BL Gallagher, AC Irvine, J Wunderlich, et al. Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (ga, mn) as. New Journal of Physics, 10(6):065003, 2008.

[31] IA Campbell, A Fert, and O Jaoul. The spontaneous resistivity anisotropy in ni-based alloys. Journal of Physics C: Solid State Physics, 3(1S):S95, 1970.

[32] XM Zhang, CH Wan, ZH Yuan, H Wu, QT Zhang, X Zhang, BS Tao, C Fang, and XF Han. Giant magneto-seebeck effect in spin valves. arXiv preprint arXiv:1506.03698, 2015.

[33] David M Edwards, Jiri Mathon, and R Bechara Muniz. A resistor network theory of the giant magnetoresistance in magnetic superlattices. IEEE Transactions on magnetics, 27(4):3548–3552, 1991.

[34] Yong Pu, E Johnston-Halperin, DD Awschalom, and Jing Shi. Anisotropic ther- mopower and planar nernst effect in ga 1- x mn x as ferromagnetic semiconductors. Physical review letters, 97(3):036601, 2006.

[35] Rama Venkatasubramanian. Nanothermal trumpets. Nature, 463(7281):619–619, 2010.

[36] Igor Žutić, Jaroslav Fabian, and S Das Sarma. Spintronics: Fundamentals and applications. Reviews of modern physics, 76(2):323, 2004.

[37] Gerrit EW Bauer, Allan H MacDonald, and Sadamichi Maekawa. Spin caloritron- ics. Solid State Communications, 11(150):459–460, 2010.

[38] Mark Johnson. Spin caloritronics and the thermomagnetoelectric system. Solid State Communications, 150(11-12):543–547, 2010.

[39] Gerrit EW Bauer, Eiji Saitoh, and Bart J Van Wees. Spin caloritronics. Nature materials, 11(5):391–399, 2012.

[40] Stephen R Boona, Roberto C Myers, and Joseph P Heremans. Spin caloritronics. Energy & Environmental Science, 7(3):885–910, 2014.

[41] Haiming Yu, Sylvain D Brechet, and Jean-Philippe Ansermet. Spin caloritronics, origin and outlook. Physics Letters A, 381(9):825–837, 2017.

[42] Ken-Ichi Uchida. Transport phenomena in spin caloritronics. Proceedings of the Japan Academy, Series B, 97(2):69–88, 2021.

[43] Sadamichi Maekawa et al. Concepts in spin electronics, volume 13. Oxford Uni- versity Press on Demand, 2006.

[44] Sadamichi Maekawa, Sergio O Valenzuela, Takashi Kimura, and Eiji Saitoh. Spin current. Oxford University Press, 2017.

[45] S Jain, DD Lam, A Bose, H Sharma, VR Palkar, CV Tomy, Y Suzuki, and AA Tu- lapurkar. Magneto-seebeck effect in spin-valve with in-plane thermal gradient. AIP advances, 4(12):127145, 2014.

[46] XM Zhang, CH Wan, H Wu, P Tang, ZH Yuan, QT Zhang, X Zhang, BS Tao, C Fang, and XF Han. Magneto-seebeck effect in spin valves. Journal of Applied Physics, 122(14):145105, 2017.

[47] Shiwei Chen, Zhaolong Yang, Yalu Zuo, Mingsu Si, Li Xi, Huigang Shi, Dezheng Yang, and Desheng Xue. Temperature dependence of the electrical and thermal transport in feco/cu/ni80fe20 spin valves. Journal of Physics D: Applied Physics, 51(40):405302, 2018.

[48] Shaojie Hu, Tatsuya Nomura, Ginga Uematsu, Nagarjuna Asam, and Takashi Kimura. First-and second-harmonic detection of spin accumulation in a mul- titerminal lateral spin valve under high-bias ac current. Physical Review B, 94(1):014416, 2016.

[49] FL Bakker, J Flipse, and BJ Van Wees. Nanoscale temperature sensing using the seebeck effect. Journal of Applied Physics, 111(8):084306, 2012.

[50] Congpu Mu, Shaojie Hu, Jianbo Wang, and Takashi Kimura. Thermo-electric ef- fect in a nano-sized crossed permalloy/cu junction under high bias current. Applied Physics Letters, 103(13):132408, 2013.

[51] SJ Mason, A Hojem, DJ Wesenberg, AD Avery, and BL Zink. Determining ab- solute seebeck coefficients from relative thermopower measurements of thin films and nanostructures. Journal of Applied Physics, 127(8):085101, 2020.

[52] AD Avery, SJ Mason, D Bassett, D Wesenberg, and BL Zink. Thermal and electrical conductivity of approximately 100-nm permalloy, ni, co, al, and cu films and examination of the wiedemann-franz law. Physical Review B, 92(21):214410, 2015.

[53] Eric Pop. Energy dissipation and transport in nanoscale devices. Nano Research, 3(3):147–169, 2010.

[54] Nuo Yang, Xiangfan Xu, Gang Zhang, and Baowen Li. Thermal transport in nanostructures. Aip Advances, 2(4):041410, 2012.

[55] Phillbot Keblinski, SR Phillpot, SUS Choi, and JA Eastman. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International journal of heat and mass transfer, 45(4):855–863, 2002.

[56] BR Gopal, R Chahine, M Földeàki, and TK Bose. Noncontact thermoacoustic method to measure the magnetocaloric effect. Review of scientific instruments, 66(1):232–238, 1995.

[57] Hilmar Straube, Jan-Martin Wagner, and Otwin Breitenstein. Measurement of the peltier coefficient of semiconductors by lock-in thermography. Applied Physics Letters, 95(5):052107, 2009.

[58] J Döntgen, J Rudolph, T Gottschall, O Gutfleisch, S Salomon, A Ludwig, and D Hägele. Temperature dependent low-field measurements of the magnetocaloric δ t with sub-mk resolution in small volume and thin film samples. Applied Physics Letters, 106(3):032408, 2015.

[59] Shunsuke Daimon, Ryo Iguchi, Tomosato Hioki, Eiji Saitoh, and Ken-ichi Uchida. Thermal imaging of spin peltier effect. Nature communications, 7(1):1–7, 2016.

[60] Kamruzzaman Md, Shaojie Hu, Kohei Ohnishi, and Takashi KIMURA. Temper- ature profile of nanospintronic device analyzed by spin-dependent seebeck effect. Applied Physics Express, 2021.

[61] RP Van Gorkom, J Caro, TM Klapwijk, and S Radelaar. Temperature and angular dependence of the anisotropic magnetoresistance in epitaxial fe films. Physical Review B, 63(13):134432, 2001.

[62] I Knittel and U Hartmann. Lorentz magnetoresistance of thin films in the presence of surface scattering and domain structures. Journal of magnetism and magnetic materials, 294(1):16–26, 2005.

[63] Saül Vélez, Vitaly N Golovach, Amilcar Bedoya-Pinto, Miren Isasa, Edurne Sagasta, Mikel Abadia, Celia Rogero, Luis E Hueso, F Sebastian Bergeret, and Fèlix Casanova. Hanle magnetoresistance in thin metal films with strong spin-orbit coupling. Physical review letters, 116(1):016603, 2016.

[64] H Wu, X Zhang, CH Wan, BS Tao, L Huang, WJ Kong, and XF Han. Hanle magnetoresistance: The role of edge spin accumulation and interfacial spin current. Physical Review B, 94(17):174407, 2016.

[65] Shaojie Hu and Takashi Kimura. Anomalous nernst-ettingshausen effect in non- local spin valve measurement under high-bias current injection. Physical Review B, 87(1):014424, 2013.

[66] AD Avery, Matthew R Pufall, and Barry L Zink. Determining the planar nernst effect from magnetic-field-dependent thermopower and resistance in nickel and permalloy thin films. Physical Review B, 86(18):184408, 2012.

[67] AD Avery, MR Pufall, and BL Zink. Observation of the planar nernst effect in permalloy and nickel thin films with in-plane thermal gradients. Physical review letters, 109(19):196602, 2012.

[68] R Takahashi, M Matsuo, M Ono, K Harii, H Chudo, S Okayasu, J Ieda, S Taka- hashi, S Maekawa, and E Saitoh. Spin hydrodynamic generation. Nature Physics, 12(1):52–56, 2016.

[69] GEW Bauer and E Saitoh. Bj vanwees,“. Spin caloritronics,” Nat. Mater, 11:391– 399, 2012.

[70] Frank Tsui, Baoxing Chen, Joanne Wellman, Ctirad Uher, and Roy Clarke. Heat conduction of (111) co/cu superlattices. Journal of applied physics, 81(8):4586– 4588, 1997.

[71] Luc Piraux, M Cassart, J Samuel Jiang, John Q Xiao, and CL Chien. Mag- netothermal transport properties of granular co-ag solids. Physical Review B, 48(1):638, 1993.

[72] JP Roger, AC Boccara, and T Valet. Photothermal approach to magnetoresistance monitoring in magnetic multilayers. Applied physics letters, 71(4):542–544, 1997.

[73] Jing Shi, Kevin Pettit, E Kita, SSP Parkin, R Nakatani, and MB Salamon. Field- dependent thermoelectric power and thermal conductivity in multilayered and granular giant magnetoresistive systems. Physical Review B, 54(21):15273, 1996.

[74] Jing Shi, E Kita, SSP Parkin, and MB Salamon. Magnetothermopower of co/cu1- x ni x multilayers. Journal of Applied Physics, 75(10):6455–6457, 1994.

[75] H Sato, H Henmi, Y Kobayashi, Y Aoki, H Yamamoto, T Shinjo, and V Se- chovsky. Giant magnetoresistance related transport properties in multilayers and bulk materials. Journal of Applied Physics, 76(10):6919–6924, 1994.

[76] Y Yang, J-G Zhu, RM White, and M Asheghi. Field-dependent thermal and elec- trical transports in cu/ cofe multilayer. Journal of applied physics, 99(6):063703, 2006.

[77] Nagarjuna Asam, Kazuto Yamanoi, Kohei Ohnishi, and Takashi Kimura. Thermal spin-valve effect in magnetic multi-layered nanowires. Journal of Superconductivity and Novel Magnetism, 32(10):3109–3113, 2019.

[78] L Gravier, A Fábián, A Rudolf, A Cachin, J-E Wegrowe, and J-Ph Ansermet. Spin- dependent thermopower in co/cu multilayer nanowires. Journal of magnetism and magnetic materials, 271(2-3):153–158, 2004.

[79] Takashi Kimura. Lateral Spin Transport (Diffusive Spin Current), pages 1577– 1596. Springer Netherlands, Dordrecht, 2016.

[80] Mario Norberto Baibich, Jean Marc Broto, Albert Fert, F Nguyen Van Dau, Frédéric Petroff, P Etienne, G Creuzet, A Friederich, and J Chazelas. Giant magnetoresistance of (001) fe/(001) cr magnetic superlattices. Physical review letters, 61(21):2472, 1988.

[81] Y Yang and M Asheghi. Thermal characterization of cu/cofe multilayer for giant magnetoresistive (gmr) head applications. In ASME International Mechanical Engineering Congress and Exposition, volume 4711, pages 199–210, 2004.

[82] NF Mott and H Jones. gthe theory of the properties of metals and alloys• h, clarendon press, 1936.

[83] Herbert B Callen. The application of onsager’s reciprocal relations to thermoelec-tric, thermomagnetic, and galvanomagnetic effects. Physical Review, 73(11):1349, 1948.

[84] HB Callen. Thermodynamics john wiley new york. 1960.

[85] JE Wegrowe, D Kelly, A Franck, SE Gilbert, and J-Ph Ansermet. Magnetoresis- tance of ferromagnetic nanowires. Physical review letters, 82(18):3681, 1999.

[86] J Aumentado and V Chandrasekhar. Magnetoresistance of single-domain ferro- magnetic particles. Applied physics letters, 74(13):1898–1900, 1999.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る