リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nexin-Dynein regulatory complex component DRC7 but not FBXL13 is required for sperm flagellum formation and male fertility in mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nexin-Dynein regulatory complex component DRC7 but not FBXL13 is required for sperm flagellum formation and male fertility in mice

Morohoshi, Akane 大阪大学

2020.01.21

概要

Cilia and flagella are evolutionarily-conserved microtubule-based organelles extending from
the surface of many cell types and are used for sensing and motility [1–3]. Defects in the formation or motility of these organelles are associated with human diseases such as impaired
mucociliary clearance and recurrent respiratory infections, which is called primary ciliary dyskinesia (PCD) [4]. The central component of motile cilia and flagella is the axoneme, the ‘9+2’
microtubule arrangement that consists of a central pair (CP) of two singlet microtubules surrounded by nine outer microtubule doublets (Fig 1A) [5,6]. Each doublet microtubule is composed of an A-tubule and a B-tubule. In addition to the microtubule arrangement, the
axoneme contains several accessory structures such as inner dynein arms (IDAs), outer dynein
arms (ODAs), radial spokes (RSs), and the Nexin-Dynein Regulatory Complex (N-DRC). The
IDAs and ODAs are motor complexes attached to the A-tubule and drive axoneme beating by
sliding the neighboring doublet microtubules in an ATP dependent manner [7,8]. The RSs
extend from the doublet microtubules towards the CP and mediate signal transduction
between the CP and the dynein arms [9].
The N-DRC is a large complex that links the A-tubule of one doublet to the B-tubule of the
adjacent doublet [10–12]. In the unicellular flagellate Chlamydomonas reinhardtii, 11 distinct
subunits that compose the N-DRC have been identified [10,13,14]. Further studies using Chlamydomonas mutants revealed that the N-DRC plays critical roles in regulating flagellar motility [15–17]. Involvement of N-DRC in regulating flagellar motility has also been clarified in
the flagellate protozoa Trypaosoma brucei [18–20]. The N-DRC components are conserved
evolutionarily from Chlamydomonas and Trypanosoma to humans and several studies have
shown a link between DRC disruptions and ciliary motility defects in vertebrates. For example,
gas8 (drc4) knockdown leads to impaired cilia motility in zebrafish embryos [21]. Further,
mutations in CCDC164 (DRC1), CCDC65 (DRC2), and GAS8 have been found in PCD
patients [22–24]. In mouse models, mutations in Gas8 and Lrrc48 (Drc3) phenocopy PCD
patients [25,26].
In addition to ciliary motility defects, PCD patients can exhibit infertility due to abnormal
flagellar movement of the spermatozoa. Although detailed morphology and motility of the
spermatozoa were not described, an asthenozoospermia patient with a mutation in GAS8 was
reported [27]. In mice, it was reported that Lrrc48 mutant males were infertile in addition to
displaying abnormal ciliary motility [26]. Further, Iqcg (Drc9) KO male mice were infertile due
to severe defects in flagellar formation and immotility of spermatozoa [28]. ...

この論文で使われている画像

参考文献

1.

Gibbons IR. Cilia and flagella of eukaryotes. J Cell Biol. 1981; 91: 107–124.

2.

Satir P, Christensen ST. Overview of Structure and Function of Mammalian Cilia. Annu Rev Physiol.

2007; 69: 377–400. https://doi.org/10.1146/annurev.physiol.69.040705.141236 PMID: 17009929

3.

Carvalho-santos Z, Azimzadeh J, Pereira-leal JB, Bettencourt-dias M. Tracing the origins of centrioles,

cilia, and flagella. J Cell Biol. 2011; 195: 341.

4.

Fliegauf M, Benzing T, Omran H. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol.

2007; 8: 880–93. https://doi.org/10.1038/nrm2278 PMID: 17955020

5.

Luck DJL. Genetic and biochemical dissection of the eucaryotic flagellum. J Cell Biol. 1984; 98: 789–

794. https://doi.org/10.1083/jcb.98.3.789 PMID: 6230366

6.

Porter ME, Sale WS. The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases

and phosphatases that control motility. J Cell Biol. 2000; 151: 37–42.

7.

Satir P. Studies on cilia. 3. Further studies on the cilium tip and a “sliding filament” model of ciliary motility. J Cell Biol. 1968; 39: 77–94. https://doi.org/10.1083/jcb.39.1.77 PMID: 5678451

8.

Summers KE, Gibbons IR. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella

of sea-urchin sperm Proc Natl Acad Sci. 1971; 68: 3092–3096. https://doi.org/10.1073/pnas.68.12.

3092 PMID: 5289252

9.

Yang P, Diener DR, Yang C, Kohno T, Pazour GJ, Dienes JM, et al. Radial spoke proteins of Chlamydomonas flagella. J Cell Sci. 2006; 119: 1165–1174. https://doi.org/10.1242/jcs.02811 PMID: 16507594

10.

Heuser T, Raytchev M, Krell J, Porter ME, Nicastro D. The dynein regulatory complex is the nexin link

and a major regulatory node in cilia and flagella. J Cell Biol. 2009; 187: 921–933. https://doi.org/10.

1083/jcb.200908067 PMID: 20008568

11.

Oda T, Yanagisawa H, Kikkawa M. Detailed structural and biochemical characterization of the nexindynein regulatory complex. Mol Biol Cell. 2015; 26: 294–304. https://doi.org/10.1091/mbc.E14-091367 PMID: 25411337

12.

Gardner LC, O’Toole E, Perrone CA, Giddings T, Porter ME. Components of a "dynein regulatory complex" are located at the junction between the radial spokes and the dynein arms in Chlamydomonas flagella. J Cell Biol. 1994; 127: 1311–1325. https://doi.org/10.1083/jcb.127.5.1311 PMID: 7962092

13.

Gui L, Song K, Tritschler D, Bower R, Yan S, Dai A, et al. Scaffold subunits support associated subunit

assembly in the Chlamydomonas ciliary nexin–dynein regulatory complex. Proc Natl Acad Sci U S A.

2019; 116: 23152–23162. https://doi.org/10.1073/pnas.1910960116 PMID: 31659045

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008585 January 21, 2020

18 / 21

DRC7 is essential for male fertility

14.

Lin J, Tritschler D, Song K, Barber CF, Cobb JS, Porter ME, et al. Building blocks of the nexin-dynein

regulatory complex in chlamydomonas flagella. J Biol Chem. 2011; 286: 29175–29191. https://doi.org/

10.1074/jbc.M111.241760 PMID: 21700706

15.

Bower R, Tritschler D, Vanderwaal K, Perrone CA, Mueller J, Fox L, et al. The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in

motile axonemes. Mol Biol Cell. 2013; 24:1134–52. https://doi.org/10.1091/mbc.E12-11-0801 PMID:

23427265

16.

Bower R, Tritschler D, Mills KV, Heuser T, Nicastro D, Porter ME. DRC2/CCDC65 is a central hub for

assembly of the nexin-dynein regulatory complex and other regulators of ciliary and flagellar motility.

Mol Biol Cell. 2018; 29: 137–153. https://doi.org/10.1091/mbc.E17-08-0510 PMID: 29167384

17.

Awata J, Song K, Lin J, King SM, Sanderson MJ, Nicastro D, et al. DRC3 connects the N-DRC to dynein

g to regulate flagellar waveform. Mol Biol Cell. 2015; 26: 2788–800. https://doi.org/10.1091/mbc.E1501-0018 PMID: 26063732

18.

Ralston KS, Lerner AG, Diener DR, Hill KL. Flagellar motility contributes to cytokinesis in Trypanosoma

brucei and is modulated by an evolutionarily conserved dynein regulatory system. Eukaryot Cell. 2006;

5: 696–711. https://doi.org/10.1128/EC.5.4.696-711.2006 PMID: 16607017

19.

Kabututu ZP, Thayer M, Melehani JH, Hill KL. CMF70 is a subunit of the dynein regulatory complex. J

Cell Sci. 2010; 123(Pt 20): 3587–95. https://doi.org/10.1242/jcs.073817 PMID: 20876659

20.

Nguyen HT, Sandhu J, Langousis G, Hill KL. CMF22 is a broadly conserved axonemal protein and is

required for propulsive motility in Trypanosoma brucei. Eukaryot Cell. 2013; 12: 1202–13. https://doi.

org/10.1128/EC.00068-13 PMID: 23851336

21.

Colantonio JR, Vermot J, Wu D, Langenbacher AD, Fraser S, Chen JN, et al. The dynein regulatory

complex is required for ciliary motility and otolith biogenesis in the inner ear. Nature. 2009; 457: 205–9.

https://doi.org/10.1038/nature07520 PMID: 19043402

22.

Wirschell M, Olbrich H, Werner C, Tritschler D, Bower R, Sale WS, et al. The nexin-dynein regulatory

complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet. 2013; 45:

262–268. https://doi.org/10.1038/ng.2533 PMID: 23354437

23.

Austin-Tse C, Halbritter J, Zariwala MA, Gilberti RM, Gee HY, Hellman N, et al. Zebrafish ciliopathy

screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am J Hum Genet. 2013; 93: 672–686. https://doi.org/10.1016/j.ajhg.2013.08.015

PMID: 24094744

24.

Olbrich H, Cremers C, Loges NT, Werner C, Nielsen KG, Marthin JK, et al. Loss-of-Function GAS8

Mutations Cause Primary Ciliary Dyskinesia and Disrupt the Nexin-Dynein Regulatory Complex. Am J

Hum Genet. 2015; 97: 546–54. https://doi.org/10.1016/j.ajhg.2015.08.012 PMID: 26387594

25.

Lewis WR, Malarkey EB, Tritschler D, Bower R, Pasek RC, Porath JD, et al. Mutation of Growth Arrest

Specific 8 Reveals a Role in Motile Cilia Function and Human Disease. PLoS Genet. 2016; 12:

e1006220. https://doi.org/10.1371/journal.pgen.1006220 PMID: 27472056

26.

Ha S, Lindsay AM, Timms AE, Beier DR. Mutations in Dnaaf1 and Lrrc48 Cause Hydrocephalus, Laterality Defects, and Sinusitis in Mice. G3 (Bethesda). 2016; 6: 2479–87.

27.

Jeanson L, Thomas L, Copin B, Coste A, Sermet-Gaudelus I, Dastot-Le Moal F et al. Mutations in

GAS8, a Gene Encoding a Nexin-Dynein Regulatory Complex Subunit, Cause Primary Ciliary Dyskinesia with Axonemal Disorganization. Hum Mutat. 2016; 37: 776–85. https://doi.org/10.1002/humu.

23005 PMID: 27120127

28.

Li R, Tan J, Chen L, Feng J, Liang W, Guo X, et al. Iqcg Is Essential for Sperm Flagellum Formation in

Mice. PLoS One. 2014; 9: e98053. https://doi.org/10.1371/journal.pone.0098053 PMID: 24849454

29.

Castaneda JM, Hua R, Miyata H, Oji A, Guo Y, Cheng Y, et al. TCTE1 is a conserved component of the

dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa. Proc Natl

Acad Sci U S A. 2017; 114: 5370–5378.

30.

Yang Y, Cochran DA, Gargano MD, King I, Samhat NK, Burger BP, et al. Regulation of flagellar motility

by the conserved flagellar protein CG34110/Ccdc135/FAP50. Mol Biol Cell. 2011; 22: 976–87. https://

doi.org/10.1091/mbc.E10-04-0331 PMID: 21289096

31.

Kluin PM, Kramer MF, de Rooij DG. Spermatogenesis in the immature mouse proceeds faster than in

the adult. Int J Androl. 1982; 5: 282–294. https://doi.org/10.1111/j.1365-2605.1982.tb00257.x PMID:

7118267

32.

Baker MA, Naumovski N, Hetherington L, Weinberg A, Velkov T, Aitken RJ. Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics. 2013; 13: 61–74. https://doi.org/

10.1002/pmic.201200350 PMID: 23161668

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008585 January 21, 2020

19 / 21

DRC7 is essential for male fertility

33.

Oji A, Noda T, Fujihara Y, Miyata H, Kim YJ, Muto M, et al. CRISPR/Cas9 mediated genome editing in

ES cells and its application for chimeric analysis in mice. Sci Rep. 2016; 6: 31666. https://doi.org/10.

1038/srep31666 PMID: 27530713

34.

Fujihara Y, Kaseda K, Inoue N, Ikawa M, Okabe M. Production of mouse pups from germline transmission-failed knockout chimeras. Transgenic Res. 2013; 22: 195–200. https://doi.org/10.1007/s11248012-9635-x PMID: 22826106

35.

Inaba K, Shiba K. Microscopic analysis of sperm movement: links to mechanisms and protein components. Microscopy (Oxf). 2018; 67: 144–155.

36.

Lehti MS, Sironen A. Formation and function of the manchette and flagellum during spermatogenesis.

Reproduction. 2016; 151: 43–54.

37.

Lehti MS, Kotaja N, Sironen A. Molecular and Cellular Endocrinology KIF3A is essential for sperm tail

formation and manchette function. Mol Cell Endocrinol. 2013; 377: 44–55. https://doi.org/10.1016/j.

mce.2013.06.030 PMID: 23831641

38.

Liu Y, DeBoer K, de Kretser DM, O’Donnell L, O’Connor AE, Merriner D, et al. LRGUK-1 is required for

basal body and manchette function during spermatogenesis and male fertility. PLoS Genet. 2015; 11:

e1005090. https://doi.org/10.1371/journal.pgen.1005090 PMID: 25781171

39.

Lehti MS, Zhang F, Kotaja N, Sironen A. SPEF2 functions in microtubule-mediated transport in elongating spermatids to ensure proper male germ cell differentiation. Development. 2017; 144: 2683–2693.

https://doi.org/10.1242/dev.152108 PMID: 28619825

40.

Dunleavy JEM, Okuda H, O’Connor AE, Merriner DJ, O’Donnell L, Jamsai D, et al. Katanin-like 2 (KATNAL2) functions in multiple aspects of haploid male germ cell development in the mouse. PLoS Genet.

2017; 13: e1007078. https://doi.org/10.1371/journal.pgen.1007078 PMID: 29136647

41.

Lindemann CB, Lesich KA. Functional Anatomy of the Mammalian Sperm Flagellum. Cytoskeleton

(Hoboken). 2016; 73: 652–669.

42.

Kubo T, Hou Y, Cochran DA, Witman GB, Oda T. A microtubule-dynein tethering complex regulates the

axonemal inner dynein f (I1). Mol Biol Cell. 2018; 29:1060–1074. https://doi.org/10.1091/mbc.E17-110689 PMID: 29540525

43.

Han YG, Kwok BH, Kernan MJ. Intraflagellar transport is required in Drosophila to differentiate sensory

cilia but not sperm. Curr Biol. 2003; 13: 1679–86. https://doi.org/10.1016/j.cub.2003.08.034 PMID:

14521833

44.

Sarpal R, Todi SV, Sivan-Loukianova E, Shirolikar S, Subramanian N, Raff EC, et al. Drosophila KAP

interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm

tails. Curr Biol. 2003; 13: 1687–96. https://doi.org/10.1016/j.cub.2003.09.025 PMID: 14521834

45.

San Agustin JT, Pazour GJ, Witman GB. Intraflagellar transport is essential for mammalian spermiogenesis but is absent in mature sperm. Mol Biol Cell. 2015; 26:4358–72. https://doi.org/10.1091/mbc.

E15-08-0578 PMID: 26424803

46.

Inaba K, Mizuno K. Sperm dysfunction and ciliopathy. Reprod Med Biol. 2015; 15: 77–94. https://doi.

org/10.1007/s12522-015-0225-5 PMID: 29259424

47.

Konno A, Shiba K, Cai C, Inaba K. Branchial cilia and sperm flagella recruit distinct axonemal components. PLoS One. 2015; 10: e0126005. https://doi.org/10.1371/journal.pone.0126005 PMID:

25962172

48.

Abbasi F, Miyata H, Shimada K, Morohoshi A, Nozawa K, Matsumura T, et al. RSPH6A is required for

sperm flagellum formation and male fertility in mice. J Cell Sci. 2018; 131.

49.

Dong FN, Amiri-Yekta A, Martinez G, Saut A, Tek J, Stouvenel L, et al. Absence of CFAP69 Causes

Male Infertility due to Multiple Morphological Abnormalities of the Flagella in Human and Mouse. Am J

Hum Genet. 2018; 102: 636–648. https://doi.org/10.1016/j.ajhg.2018.03.007 PMID: 29606301

50.

Toyoda Y., Yokoyama M. and Hosi T. Studies on the fertilization of mouse eggs in vitro. Jpn. J. Anim.

Reprod. 1971; 16: 152–157.

51.

Cha´vez JC, Herna´ndez-Gonza´lez EO, Wertheimer E, Visconti PE, Darszon A, Treviño CL. Participation

of the Cl-/HCO(3)- exchangers SLC26A3 and SLC26A6, the Cl- channel CFTR, and the regulatory factor SLC9A3R1 in mouse sperm capacitation. Biol Reprod. 2012; 86: 1–14.

52.

Miyata H, Satouh Y, Mashiko D, Muto M, Nozawa K, Shiba K, et al. Sperm calcineurin inhibition prevents mouse fertility with implications for male contraceptive. Science. 2015; 350: 442–445. https://doi.

org/10.1126/science.aad0836 PMID: 26429887

53.

Niwa H, Yamamura K, Miyazaki J. Efficient selection for high-expression transfectants with a novel

eukaryotic vector. Gene. 1991; 108:193–9. https://doi.org/10.1016/0378-1119(91)90434-d PMID:

1660837

54.

Tiscornia G, Singer O, Verma IM. Production and purification of lentiviral vectors. Nat Protoc. 2006; 1:

241–245. https://doi.org/10.1038/nprot.2006.37 PMID: 17406239

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008585 January 21, 2020

20 / 21

DRC7 is essential for male fertility

55.

Shimada K, Kato H, Miyata H, Ikawa M. Glycerol kinase 2 is essential for proper arrangement of crescent-like mitochondria to form the mitochondrial sheath during mouse spermatogenesis. J Reprod Dev.

201; 65: 155–162.

56.

Sasaki K, Shiba K, Nakamura A, Kawano N, Satouh Y, Yamaguchi H, et al. Calaxin is required for ciliadriven determination of vertebrate laterality. Commun Biol. 2019; 2: 226.

57.

Kimura Y, Yanagimachi R. Intracytoplasmic sperm injection in the mouse. Biol Reprod. 1995; 52: 709–

20. https://doi.org/10.1095/biolreprod52.4.709 PMID: 7779992

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008585 January 21, 2020

21 / 21

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る