リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Crustal Movements in Colombia based on GPS Space Geodesy with the GeoRED Network」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Crustal Movements in Colombia based on GPS Space Geodesy with the GeoRED Network

MORA, PÁEZ Héctor 名古屋大学

2020.04.02

概要

The northwestern corner of South America, the southeastern of Central America and the Caribbean plate correspond to a wide plate convergence boundary. The tectonic and volcanic activity in this zone is a result of the interaction of the oceanic Cocos, Nazca and Caribbean plates, and the continental South American plate as well as the North Andean, Maracaibo, Chocó and Panamá blocks wedged in between, as was exposed by various studies. This highly complex tectono- dynamic situation of intense intraplate deformation is observed in a high density of faults, most of which are considered active or potentially active over northwestern South America and southeastern Central America. Also, the seismicity is spread over a broad area across the wide plate boundary in northwestern South America, Central America, and southwestern Caribbean, whose complexity was referred as a “Wide Plate Margin”. This, coupled with a potential of large magnitude megathrust and tsunami events related to the Pacific subduction zone, means that a high percentage of Colombia’s population lives under a constant threat of unannounced large magnitude earthquakes and tsunamis, with a potential of inflicting great damage in terms of loss of lives and destruction of infrastructure.

Given the tectonic complexity in the mentioned region and the high possibility of occurrence of large earthquakes and tsunamis as well as volcanic eruptions among other hazards of geological origin, systematic studies to establish a monitoring system for the current situation of crustal deformation using space geodesy techniques is of great importance. In Colombia, the establishment of an adequate network of GPS stations covering the entire Colombian territory, named GeoRED project, has begun to contribute to the understanding of the crustal dynamic processes. During the last decade, the main focus and efforts have been directed to the design and installation of the network. Generation of a steadily increasing stream of data has permitted, until to date, to construct a sufficiently detailed velocity field that is capable of registering the process of tectonic escape of the North Andean Block.

Using data from 60 permanent GPS stations from Colombia, Ecuador, Panama, Costa Rica and Venezuela, located on the Nazca, South American, Cocos and Caribbean plates, a new velocity field was estimated in ITRF2008.

By combining the velocity data obtained in this study and those in Ecuador, a new comprehensive model of the North Andean Block (NAB) was estimated, with a motion estimate of 8.6 ± 1.0 mm/yr with respect to the South American plate (SOAM) in the N60°E direction. This NAB velocity can be resolved into a margin- parallel component of 8.1 ± 0.7 mm/yr and a margin-normal component of 4.3 ± 0.6 mm/yr, assuming an average trend of N35°E of the NAB-SOAM margin based on the general direction of the eastern edge of the Eastern Cordillera in Colombia between latitudes 1° and 7° N. Various mechanisms responsible for the tectonic escape of the NAB are considered such as the collision of the Carnegie ridge, the rapid oblique convergence of the Nazca plate along the Colombia-Ecuador trench, and the high coupling at the Nazca-NAB subduction plate interface. Among them, the last two are clearly demonstrated with GPS results.

The GPS velocity field allows to observe the oblique subduction of the Nazca plate at a rate of 54.1 ± 0.4 mm/yr in N87°E direction with respect to the South American plate, based on two GPS stations. Given the limited number of GPS stations located on the Nazca plate, a GPS station of the GeoRED network on the Malpelo Island (Colombia), the only island in the northern part of the Nazca plate, allows refining the motion of the Nazca plate. Velocity vectors at stations located on the Pacific coast of Colombia reflect clear evidence of strain accumulation on the Nazca subduction zone.

The oblique convergence of the Caribbean plate with respect to the South America plate is represented by the velocity of stations installed in Colombian islands located on the Caribbean plate. The velocities of those stations are 17.6 ± 0.6 mm/yr in the S100°E direction with respect to the South American plate. This plate motion is probably absorbed at the South Caribbean Deformed Belt, which is a submarine prism that was formed at the interface between oceanic material that is subducting in the basins of Colombia and Venezuela, and arc terranes along the northern edge of the South American plate.

There is geodetic evidence of the active collision between the Panama block and NAB. Although the Atrato-Uraba Fault Zone is a candidate location of the boundary, the collision boundary is diffused over a wide area in the range of 200 to 300 km. This feature is reflected in the east components of the velocities with respect to NAB. In order to distinguish the effect of the Nazca plate or the Panama block, an analysis was performed using a velocity diagram, finding a combined effect of the subduction of the Nazca plate and the collision of Panama at BASO station (6.203°N,77.393°W). But it is not possible to distinguish which of the two effects is more representative.

In southwestern Colombia, GPS velocities obtained from GeoRED network were significantly different from those observed in 1990’s. Postseismic deformation associated with the Mw 8.2 earthquake on December 12, 1979 is considered to be a candidate mechanism for this difference and a viscoelastic relaxation effect due to this earthquake was evaluated for 40 years after the occurrence of the earthquake using the viscoelastic-gravitational dislocation theory. It is concluded that the postseismic effect was significant in 1990’s when the first space geodetic measurements were conducted in Colombia while the effect has faded out in 2010’s, resulting in a significant velocity changes in southwestern Colombia. The consistency between the observation and the model implies that the mantle viscosity along the Nazca subduction is around 1019 Pa・s, consistent with other major subduction zones.

From the velocity field obtained in this dissertation, a margin-normal shortening across the Eastern Cordillera of Colombia is estimated less than 4.1 mm/yr. This observation is not consistent with paleobotanical studies of the uplift history of the Eastern Cordillera that suggest a rapid uplift (7 km) and shortening (120 km) during the last 10 Ma. As an alternative scenario regarding mountain building and shortening in the Eastern Cordillera of Colombia due to the collision of the Panama block, a “broken indenter” model for the Panama-Choco arc is proposed. The model considers that the Choco arc has been recently (1-2 Ma) accreted to the NAB and the shortening as well as the uplift rate at the Eastern Cordillera drastically decreased.

この論文で使われている画像

参考文献

Acosta J., F. Velandia, J. Osorio, L. Lonergan and H. Mora, (2007). Strike-slip deformation within the Colombian Andes, In: Deformation of the Continental Crust: The Legacy of Mike Coward, Ries A C., Butler, R. W. H. & Graham, R. H. (eds), Geological Society, London, Special Publications, 272, 303–319.

Adamek, S., C. Frohlich, W. D. Pennington, (1988). Seismicity of the Caribbean–Nazca boundary; Constraints on microplate tectonics of the Panama region, J. Geophys. Res. 93: 2053-2075.

Adams D. K., S. I. Gutman, K. L. Holub and D. S. Pereira, (2013), GNSS observations of deep convective time scales in the Amazon. Geophysical Research Letters 40: 2818–2823. DOI: 10.1002/grl.50573

Adriano B., M. Arcila, R. Sanchez, E. Mas, S. Koshimura, P. Arreaga and N. Pulido, (2017), Estimation of the tsunami source of the 1979 great Tumaco earthquake using numerical modeling, 16th. World Conference on Earthquake, Conference Paper

Agnew, D. C., Burke, K., Cazenave, A., Dixon, T., Hager, B. H., Heirtzler, J. R., Jordan, T. H., Minster, J. B., McNutt, M. K., Royden, L. H., Sandwell, D. T., and Turcotte, D. L., (1988). Long term dynamics of the solid Earth, in Lecture Notes in Earth Sciences, 22. The Interdisciplinary Role of Space Geodesy, I. Mueller and S. Zerbini, Eds., Springer-Verlag.

Allen, R. M., and A. Ziv, (2011), Application of real-time GPS to earthquake early warning, Geophys. Res. Lett., 38, L16310, doi:10.1029/2011GL047947.

Allmendinger, R. A., Loveless, J. P., Pritchard, M. E., and Meade, B., (2009). From decades to epochs: Spanning the gap between geodesy and structural geology of active mountain belts: Journal of Structural Geology, doi: 10.1016/j.jsg.2009.08.008.

Altamimi, Z., X. Collilieux, and L. Métivier (2011). ITRF2008: An improved solution of the International Terrestrial Reference Frame, J. Geod., 85(8), 457–473, doi:10.1007/s00190-011-0444-4

Altamimi Z., L. Métivier, and X. Collilieux (2012). ITRF2008 plate motion model, J. Geophys. Res., 117, B07402, doi:10.1029/2011JB008930

Alvarado A., L. Audin, J. M. Nocquet, E. Jaillard, P. Mothes, P. Jarrin, M. Segovia, F. Rolandone, and D. Cisneros (2016), Partitioning of oblique convergence in the Northern Andes subduction zone: Migration history and the present-day boundary of the North Andean Sliver in Ecuador, Tectonics, 35 : 1048–1065. doi:10.1002/2016TC004117.

Anderson, V. J., Horton, B. K., Saylor, J. E., Mora, A., Tesón, E., Breecker, D. O., and Ketcham, R. A., (2016). Andean topographic growth and basement uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon river systems: Geosphere, v. 12, no. 4, p. 1235–1256, doi:10.1130/GES01294.1.

Andrei, C.-O., S. Lahtinen, M. Nordman, J. Näränen, H. Koivula, M. Poutanen and J. Hyyppä, (2018), GPS Time Series Analysis from Aboa the Finnish Antarctic Research Station. Remote Sens. 10, 1937.

Andriessen, P. A. M., K. F. Helmens, H. Hooghiemstra, P. A. Riezobos, and T. Van der Hammen (1993), Absolute chronology of the Pliocene-Quaternary sediment sequence of the Bogotá area, Colombia, Quat. Sci. Rev., 12, 483–503.

Argus, D. F., R. G. Gordon, and C. DeMets, (2011), Geologically current motion of 56 plates relative to the no-net-rotation reference frame, Geochemistry, Geophysics, Geosystems 12 (11), doi:10.1029/2011GC003751

Argus D. F., R. G. Gordon, M. B. Heflin, C. Ma, R. J. Eanes, P. Willis, W. R. Peltier and S. Owen (2010), The angular velocities of the plates and the velocity of Earth’s centre from space geodesy, Geophys. J. Int. (2010) 180, 913–960 doi: 10.1111/j.1365-246X.2009.04463.x

Argus, D. F. and R. G. Gordon, (1991), No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett., 18, 2039-2042,doi:10.1029/91GL01532.

Assumpcao, M., (1992). The Regional Intraplate Stress Field in South America. J. Geophys. Res. 97, 11889-11903. Doi: 10.1029/91JB01590

Audemard, F. A. (1993). Néotectonique, Sismotectonique et Aléa Sismique du Nord- ouest du Vénézuéla (Système de failles d’Oca–Ancón). PhD thesis, Université Montpellier II, France, 369 pp + appendix.

Audemard, F. A. (2001). Quaternary tectonics and stress tensor of the northern inverted Falcón Basin, northwestern Venezuela. Journal of Structural Geology, Special Memorial Issue to Paul Hancock, 23(2-3): 431-453. doi: 10.1016/S0191- 8141(00)00116-4

Audemard F. E. and F. A. Audemard, (2002), Structure of the Mérida Andes, Venezuela: relations with the South America-Caribbean geodynamic interaction. Tectonophysics, 345 (1–4): 299–327.

Audemard, F. A. (2002). Ruptura de los grandes sismos históricos venezolanos de los siglos XIX y XX, revelados por la sismicidad instrumental contemporánea. XI Congreso Venezolano de Geofísica, Caracas, Venezuela, Nov. 17-20, 2002 (8pp; Extended Abstract in CD).

Audemard F., M. Machette, J. Cox, R. Dart, K. Heller, (2000). Map and Database of Quaternary Faults and Folds in Venezuela and its Offsohre Regions. USGS Open-File Report, 00-1018 (accessible from USGS webpage; open file reports ofr-00-0018).

Audemard, F. A. (2003). Geomorphic and geologic evidence of ongoing uplift and deformation in the Mérida Andes, Venezuela. Quaternary International, 101- 102C: 43-65. doi: 10.1016/S1040-6182(02)00128-3

Audemard, F. A. (2009). Key issues on the post-Mesozoic southern Caribbean plate boundary. In: James, K.H., Lorente, M.A. and Pindell, J., (eds) Origin and Evolution of the Caribbean Plate, Geological Society, London, Special Publications, 328: 567-584. doi: 10.1144/SP328.23

Audemard F., (2014). Active block tectonics in and around the Caribbean: a review. In: The Northeastern Limit of the South American Plate – Lithosperic Structures from Surface to the Mantle, M. Schmitz, F. Audemard, F. Urbani (Eds), Fac. Ing. Univ. Central de Venezuela y FUNVISIS, ISBN 978-980-00-2800-1, 29- 77

Banks N., C. Carvajal, H. Mora and E. Tryggvasson (1990), Deformation monitoring at Nevado del Ruiz, Colombia - October 1985 - March 1988, J. Volcanology and Geothermal Research 41: 269-295, https://doi.org/10.1016/0377- 0273(90)90092-T

Barat, F., de Lépinay B. M., Sosson M., Müller C., Baumgartner P. O., Baumgartner- Mora C., (2014). Transition from the Farallon Plate subduction to the collision between South and Central America: Geological evolution of the Panama Isthmus, Tectonophysics 622, 145-167, doi.org/10.1016/j.tecto.2014.03.008.

Barka A. and R. Reilinger, (1997), Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonics and seismicity data, Annali di Geofisica Vol XL (3), 587-610

Bartel B., (2014), Stability of PBO GPS Monument Types, Earth Scope, Project Highlight, http://www.earthscope.org/articles/PBO_GPS_monument, (accessed on June 18, 2018)

Bastos L., M. Bos and R. M. Fernandes (2010), Deformation and Tectonics: Contribution of GPS Measurements to Plate Tectonics – Overview and Recent Developments, In: Sciences of Geodesy G. Xu (Ed), 10.1007/978-3-642-11741- 1_5

Bawden, G.W., W. Thatcher, R. S. Stein, K. W. Hudnut, G. and Peltzer, (2001). Tectonic contraction across Los Angeles after removal of groundwater pumping effects: Nature, v. 412, p. 812-815.

Bayona G., A. Cardona, C. Jaramillo, A. Mora, C. Montes, V. Caballero, H. Mahecha, F. Lamus, O. Montenegro, G. Jiménez, A. Mesa and V. Valencia, (2013). Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin; response to Caribbean–South American convergence in early Palaeogene time. Geological Society, London, Special Publications published online March 8, 2013 as doi: 10.1144/SP377.5

Benz, H. M., A. C. Tarr, G. P. Hayes, A. Villaseñor, K. P. Furlong, R. L. Dart, and S. Rhea, (2011), Seismicity of the Earth 1900–2010, Caribbean plate and vicinity, U.S. Geological Survey Open-File Report 2010–1083-A, scale 1:8,000,000.

Bernal-Olaya, R., P. Mann, C.A. Vargas, (2015). Earthquake, tomographic, seismic reflection, and gravity evidence for a shallowly dipping subduction zone beneath the Caribbean margin of northwestern Colombia, in C. Bartolini and P. Mann eds, Petroleum Geology and Potential of the Colombian Caribbean Margin, AAPG Memoir 108, ISBN 13: 978-0-89181-388-0, 247-270.

Bertiger W., S. Desai, B. Haines, N. Harvey, A. Moore, S. Owen, J. Weiss., (2010). Single Receiver Phase Ambiguity Resolution with GPS Data. Journal of Geodesy. DOI: 10.1007/s00190-010-0371-9.

Bevis M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes y R. H. Ware, (1992), GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System, Journal of Geophysical Research 97: 15787–15801, DOI: 10.1029/92JD01517

Bevis M., J. Bedford and D. Caccamise II, (2020), The Art and Science of Trajectory Modelling, In Geodetic Time Series Analysis in Earth Sciences, J.-P. Montillet and M. S. Bos (eds)., Springer Geophysics, Springer Nature Switzerland AG 2020, 1-27, https://doi.org/10.1007/978-3-030-21718-1_1

Bezada, M. J., A. Levander, and B. Schmandt (2010), Subduction in the southern Caribbean: Images from finite frequency P wave tomography, J. Geophys. Res., 115, B12333, doi:10.1029/2010JB007682.

Bilek, S. L., and Lay, T., 2018, Subduction zone megathrust earthquakes: Geosphere 14 (4): 1468–1500, https:// doi .org /10 .1130 /GES01608.1

Bilham R., R. S. Yeats, S. Zerbini, S., (1989). Space geodesy and global forecast of earthquakes, EOS Transactions, Am. Geophys. Un. 70, 65-73.

Blewitt G., W. C. Hammond, and C. Kreemer, (2009, Geodetic observation of contemporary deformation in the northern Walker Lane: 1. Semipermanent GPS strategy, in Oldow, J. S., and Cashman, P.H., eds., Late Cenozoic Structure and Evolution of the Great Basin–Sierra Nevada Transition: Geological Society of America Special Paper 447, p. 1–15, doi: 10.1130/2009.2447(01).

Blewitt G., (2009), GPS and Space-Based Geodetic Methods, In: Treatise on Geophysics: Geodesy, Vol 3, G. Schubert (Ed), Elsevier, Amsterdam, 351-390

Blewitt G., Lavallée D., (2002). Bias in Geodetic Site Velocity due to Annual Signals: Theory and Assessment, in: Ádám J., Schwarz KP. (Eds.), Vistas for Geodesy in the New Millennium. International Association of Geodesy Symposia. 125. Springer, Berlin, Heidelberg.

Blewitt G., and D. Lavallée (2002), Effect of annual signals on geodetic velocity, J. Geophys. Res., 107(B7), B72145, doi:10.1029/2001JB000570.

Blewitt G., (1990), An Automatic Editing Algorithm for GPS Data, Geophys. Res. Lett. 17(3), 199-202, doi.org/10.1029/GL017i003p00199

Blume F., H. Berglund, K. Feaux, K. Austin, T. Dittman, C. Walls, H. Mattioli and T. Herring, (2013), Stability of GNSS Monumentation: Analysis of co-located monuments in the Plate Bpundary Observatory, AGU Fall Meeting, G5IB-04

Boehm, J., B. Werl, and H. Schuh (2006), Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geophys. Res., 111, B02406, doi:10.1029/2005JB003629.

Bogusz J., S. Rosat, A. Klos and A. Lenczuk (2018), On the noise characteristics of time series recorded with nearby located GPS receivers and superconducting gravity meters, Acta Geod Geophys (2018) 53:201–220, doi.org/10.1007/s40328-018-0212-5

Bos M. S., J.-P. Montillet, S.D.P. Williams and R.M.S. Fernandes (2020), Introduction to Geodetic Time Series Analysis, In Geodetic Time Series Analysis in Earth Sciences, J.-P. Montillet and M. S. Bos (eds)., Springer Geophysics, Springer Nature Switzerland AG 2020, 29-52, doi.org/10.1007/978-3-030-21718-1_2

Bos M. and R. Fernandes, (2016). Hector User Manual, version 1.6, 31 p.

Bos M. S., R.M.S. Fernandes, S.D.P. Williams and L. Bastos, (2013). Fast Error Analysis of Continuous GNSS Observations with Missing Data. J. Geod., Vol 87 (4), 351-360, doi:10.1007/s00190-012-0605-0.

Bos M. S, Bastos L, Fernandes R.M.S., 2010. The influence of seasonal signals on the estimation of the tectonic motion in short continuous GPS time-series”, Journal of Geodynamics, Vol. 49(3-4), 205– 209, doi:10.1016/j.jog.2009.10.005.

Boschman, L.M., D. J. J. van Hinsbergen, T. H. Torsvik, W. Spakman, J. L. Pindell, (2014). Kinematic reconstruction of the Caribbean region since the Early Jurassic, Earth-Science Reviews 138, 102-136, doi.org/10.1016/j.earscirev.2014.08.007.

Box G., G. Jenkins and G. Reinsel, (2005), Time Series Analysis: Forecasting and Control, Wiley & Sons, New Jersey, 4th. Ed., 746 p.

Braun J., Mattioli G., Calais E., Carlson D., Dixon T. H., Jackson M., Kursinski R., Mora-Paez H., Miller M., Pandya R-. Robertson R., and Wang G., (2012). Focused Study of Interweaving Hazards Across the Caribbean, Eos, Vol. 93, No. 9: 89-90

Buttkus B. (2000), Spectral Analysis and Filter Theory in Applied Geophysics, Springer-Verlag Berlin, Heidelberg, 667 p.

Cannavo F. Nad M. Palano (2016), Defining Geodetic Reference Frame using Matlab: PlatEMotion 2.0, Pure Appl. Geophysi. 173:937-944

Cannavo and Palano (2011), PlatEmotion: A Matlab tool for Geodetic Reference Frame, Istituto Nazionale di Geofisica e Vulcanologia, Rapporti Tecnici 201, 13 p.

Case, J. E., and W. D. MacDonald, (1973), Regional gravity anomalies and crustal structure in northern Colombia, Geol, Soc. Am. Bull, 84: 2905-2916.

Case, J.E., S. Duran, R. A. Lopez and W. R. Moore (1971). Tectonic investigations in western Colombia and eastern Panama, Geol. Soc. Am. Bull. 82, 2685–2712.

Cediel, F., R.P. Shaw and C. Cáceres (2003). Tectonic assembly of the Northern Andean Block, in TheCircum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics C.Bartolini, R.T.Buffler and J. Blickwede, (editors) AAPG Memoir 79, 815–848.

Chlieh M., P.A. Mothes, J.M. Nocquet, P. Jarrin, P. Charvis, D. Cisneros, Y. Font, J. Y. Collot, J.C. Villegas-Lanza, F. Rolandone, M. Vallée, M. Regnier, M. Segovia, X. Martin and H. Yepes (2014). Distribution of discrete seismic asperities and aseismic slip along the Ecuadorian megathrust, Earth and Planetary Science Letters 400: 292–301

Coates, A. G., Collins, L.S., Aubry, M-P., Berggren, W. A., (2004). The geology of the Darien, Panama, and the late Miocene-Pliocene collision of the Panama arc with northwestern South America, Geological Society of America Bulletin, v. 116, p. 1327-1344., doi: 10.1130/B25275.1

Coates. A., Stallard R., (2013).How old is the Isthmus of Panama? Bulletin of Marine Science, 89(4), 801-813

Colleta, B., F. Hebrard, J. Letouzey, P. Werner, P., and J. L. Rudkiewicz, (1990), Tectonic style and crustal structure of the Eastern Cordillera, Colombia from a balanced cross - 121 - 7. References section, in Letouzey, J., ed., Petroleum and Tectonics in Mobile Belts: Paris, Editions Technip, pp 81-100.

Collot, J.-Y., P. Charvis, M.-A. Gutscher, and S. Operto, (2002), Exploring the Ecuador-Colombia active margin and interplate seismogenic zone, Eos Trans. AGU, 83, 185–190, 2002.

Combrinck W. L. and M. Schmidt, (1998), Physical Site Specifications: Geodetic Site Monumentation, Position Paper, IGS Network Systems Workshop November 2-5, 1998 Annapolis, (accessed on June 18, 2018, http://www.hartrao.ac.za/geodesy/site_mon.htm)

Cooper, M.A., Addison, F. T., Alvarez, Coral, R. M., Graham, R. H, Hayward, A. B., Howe, S., Martinez, J., Naar, J., Peñ as, R., Pulham, A. J., Taborda, A., (1995). Basin development and tectonic history of the Llanos basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. AAPG Bulletin 79 (10), 1421-1443.

Corredor F., (2003). Seismic strain rates and distributed continental deformation in the northern Andes and three-dimensional seismotectonics of northwestern South America, Tectonophysics 372 (3–4), 147-166

Cortes, M. and J. Angelier, (2005). Current states of stress in the northern Andes as indicated by focal mechanism of earthquakes. Tectonophysics 403:29-58.

Cox A. and R. B. Hart, (2009). Plate Tectonics. How it Works. John Wiley & Sons, New York, NY, 392 p.

Crespo, E., K. K. Nyman, T. D. O’Rourke, (1987). Ecuadorean Earthquakes of March 5, 1987, Earthquake Engineering Research Institute, Special Earthquake Report 4

Davis J. L., Y. Fialko, W. E. Holt, M. M. Miller, S. E. Owen, and M. E. Pritchard (Eds.) (2012), A Foundation for Innovation: Grand Challenges in Geodesy, Report from the Long-Range Science Goals for Geodesy Community Workshop, UNAVCO, Boulder, Colorado, 79 pp.

DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S., (1990). Current plate motions: Geophysical Journal International, v. 101, p. 425-478.

DeMets, C., R. G. Gordon, D. F. Argus, (2010). Geologically current plate motions. Geophysical Journal International, 181: 1–80. doi: 10.1111/j.1365- 246X.2009.04491.x

DeMets, C., R. G. Gordon, D.F. Argus, and S. Stein, (1994). Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett., 21: 2191–2194. doi:10.1029/94GL02118

Dengo, C., Covey, M., (1993). Structure of the Eastern Cordillera of Colombia: implications for trap styles and regional tectonics. AAPG Bulletin 77 (8), 1315- 1337.

DesRoches R., M. Comerio, M. Eberhard, W. Mooney, G. J. Rix, (2011) Overview of the 2010 Haiti Earthquake. Earthquake Spectra: October 2011, Vol. 27 (S1), S1- S21. https://doi.org/10.1193/1.3630129

Dewey, J. W., (1972). Seismicity and tectonics of western Venezuela, Bull. Seismol. Soc. Am., 62, 1711-1751.

Dixon T. H., M. P. Golombek, and C. L. Thornton, (1985), Constraints on Pacific plate kinematics and dynamics with Global Positioning System measurements, IEEE Trans. Geosci. & Remote Sensing GE-23, 491-50

Dixon T. H. and S. K. Wolf, (1990a).Some Tests of Wet Tropospheric Calibration for the CASA UNO Global Positioning System experiment, Geophys. Res. Lett. 17 (3), 203-206.

Dixon, T. H., D. M. Tralli, G. Blewitt, and J.P. Dawson, (1990b), Geodetic baselines across the Gulf of California using the Global Positioning System, in Gulf and Peninsular Province of the Californias, edited by J.P. Dauphin, Memoir 47, American Association of Petroleum Geologists, Tulsa, Okla.

Dixon, T. H., G. Gonzalez, E. Katsigris, and S. M. Lichten, (1991a), First epoch geodetic measurements with the Global Positioning System (GPS) across the northern Caribbean plate boundary, J. Geophys. Res. 96 (B2): 2397- 2415, doi.org/10.1029/90JB02003

Dixon, T.H., (1991b), An introduction to the Global Positioning System and some geological applications, Rev. Geophys., 29, No. 2, pp. 249-276.

Dixon T., R. Robertson, J. Braun, E. Calais, D. Carlson, M. Jackson, R. Kursinski, G. Mattioli, M. M. Miller, H. Mora-Paez, R. Pandya and G. Wang, (2011), Report on the activities of the COCONet Workshop for Community Science, Station Siting, and Capacity Building, February 2-4, 2011, San Juan, Puerto Rico

Dixon, T. H., (1993). GPS measurement of relative motion of the Cocos and Caribbean plates and strain accumulation across the Middle America trench: Geophysical Res. Letters 20, 2167-2170.

Dixon, T. H., G. Gonzalez, S. M. Lichten, and E. Katsigris, (1991). First epoch geodetic measurements with the Global Positioning System across the Northern Caribbean Plate Boundary Zone, J. Geophys. Res., 96(B2), 2397–2415, doi:10.1029/90JB02003.

Dockter, S., D. Elliot, F. Wyatt, J. Galetzka, K. Hudnut, SCIGN Short Drilled-Braced Geodetic Monument, https://www.scign.org/arch/sdb_monument.htm, (accessed on June 8, 2018)

Doglioni C. and F. Riguzzi (2017), The space geodesy revolution for plate tectonics and earthquake studies, Satellite Positioning for Geosciences Conference, Rend. Fis. Acc. Lincei, DOI 10.1007/s12210-017-0639-6

Duong N. A., T. Sagiya, F. Kimata, T. D. To, V. Q. Hai, D. C. Cong, N. X. Binh and N. D. Xuyen (2013), Contemporary horizontal crustal movement estimation for northwestern Vietnam inferred from repeated GPS measurements, Earth Planets Sp 65: 1399-1410, https://doi.org/10.5047/eps.2013.09.010

Duque-Caro H., (1979), Major structural elements and evolution of northwestern Colombia, in Watkins, J. S., and others, eds., Geological and Geophysical investigations of continental margins: American Association of Petroleum Geologists Memoir 29: 329-351.

EarthScope (2018), EarthScope: Exploring the Structure and Evolution of the North American Continent, http://www.earthscope.org (accessed on June 19, 2018)

ECMWF (2018), European Centre for Medium-Range Weather Forecasts, https://www.ecmwf.int (accessed on June 10, 2018)

Egbue O., and J. Kellogg (2010). Pleistocene to Present North Andean “escape”, Tectonophysics, 489 (1-4), 248-257, doi:http://dx.doi.org/10.1016/j.tecto.2010.04.021.

Egbue O., and Kellogg, J., (2010). Pleistocene to Present North Andean “escape”: Tectonophysics, v. 489, p. 248–257, doi: 10.1016/j.tecto.2010.04.021.

Egbue O., and Kellogg, J., (2012). Three-dimensional structural evolution and kinematics of the Piedemonte Llanero, Central Llanos foothills, Eastern Cordillera, Colombia, Journal of South American Earth Sciences, doi:10.1016/j.jsames.2012.04.012

Egbue O., J. Kellogg, H. Aguirre and C. Torres (2014). Evolution of the stress and strain fields in the Eastern Cordillera, Colombia. J. Structural Geology, 58, 8- 21.

Ego F., M. Sebried, A. Lavenu, H. Yepez and A. Eguez (1993). A new geodynamical model for the northern Ecuador Andes, EUG VII, 4-8 April 1933, Terra abstract 5 (1), 203.

Ego F., M. Sebrier, A. Lavenu, H. Yepes, and A. Egues, (1996). Quaternary state of stress in the Northern Andes and the restraining bend model of the Ecuadorian Andes. Tectonophysics 259,101–116.

Elliot J. R., R. J. Walters and T. J. Wright (2016), The role of space-based observation in understanding and responding to active tectonics and earthquakes, Nat. Commun. 7: 13844, doi: 10.1038/ncomms13844.

England P. and D. McKenzie (1982), A thin viscous sheet model for continental deformation, Geophys. J. R. astr. Soc. 70, 295-321

Estey L. H. and C. M. Meertens, (1999), TEQC: The Multi-Purpose Toolkit for GPS/GLONASS Data, L. H. Estey and C. M. Meertens, GPS Solutions 3 (1) 42-49, John Wiley & Sons, doi:10.1007/PL00012778

Fernandes R. M. S. , H. Mora-Páez, P. LaFemina, M. Bos, (2016), Present-day GPS velocity field of South America, Proceedings IASPEI Regional Assembly Latin- American Seismological Comission-LACSC, Seismology for Science and Science for Society, Abstract O190, p. 118, San José de Costa Rica, June 20- 22, 2016

Fernandes R. M. S., pers. comm.

Fernandes R. M. S., M. Bos, A. Alothman, H. Mora-Páez, (2017), Comparing Global and Dedicated Plate Angular Velocity Models: the cases of Arabia and South America, Abstract G04-4-02, IAG Symposia » G04. Earth rotation and geodynamics, IAG-IASPEI Joint Meeting, Kobe International Center, Kobe, Japan, July30-August 4, 2017

Förste, C., Bruinsma, S. L., Abrikosov, O., Lemoine, J.-M., Marty, J. C., Flechtner, F., Balmino, G., Barthelmes, F., Biancale, R. (2014): EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. DOI: http://doi.org/10.5880/ICGEM.2015.1

Freymueller, J.T. and J.N. Kellogg, (1990). The extended tracking network and indications of baseline precision and accuracy in the North Andes, CASA UNO Special Issue, Geophysical Research Letters, 17, 207-210.

Freymueller, J.T., J. N. Kellogg, and V. Vega (1993). Plate Motions in the North Andean region, J. Geophys. Res. 98 (B12), 21853-21863.

Gailler A., P. Charvis and E. Flueh (2007), Segmentation of the Nazca and South American plates along the Ecuador subduction zone from wide angle seismic profiles, Earth and Planetary Science Letters 260:444–464, DOI: 10.1016/j.epsl.2007.05.045

GeoNet, (2018), Geological Hazard Information for New Zealand, https://www.geonet.org.nz/about, (accessed on December 8, 2018).

GGOS, 2018, GGOS Atmosphere Project, http://ggosatm.hg.tuwien.ac.at, (accessed on June 10, 2018)

Goudarzi M.A., M. Cocard, R. Santerre (2015), Noise behavior in CGPS position time- series: The eastern North America case study. J. Geod. Sci. 5 (1), doi.org/10.1515/jogs-2015-0013

Goudarzi M.A., M. Cocard, R. Santerre (2014), EPC: Matlab software to estimate Euler pole parameters, GPS Solut. 18:153–162, DOI 10.1007/s10291-013-0354-4

Gregory-Wodzicki, K.M., (2000). Andean paleoelevation estimates: A review and critique. GSA Bulletin 112, 1091-1105.

GSI, (2018), Geodetic Survey, http://www.gsi.go.jp/ENGLISH/page_e30030.html (accessed on December 8, 2018)

Gutscher, M. A., Malavieille, J., Lallemand, S., Collot, J. Y., (1999). Tectonic segmentation of the North Andean margin; impact of the Carnegie Ridge collision. Earth Planet. Sci. Lett. 168, 255-270.

Hackl M., R. Malservisi, U. Hugentobler, and R. Wonnacott (2011), Estimation of velocity uncertainties from GPS time series: Examples from the analysis of the South African TrigNet network, J. Geophys. Res., 116, B11404, doi:10.1029/2010JB008142.

Hatanaka, Y. (2008), A Compression Format and Tools for GNSS Observation Data, Bulletin of the Geographical Survey Institute, 55, 21-30 http://www.gsi.go.jp/common/000045517.pdf

Haug, G., Tiedemann R., Zahn R., Ravelo A. C., (2001). Role of the Panama uplift on oceanic freshwater balance, Geology 29, 207–210, doi.org/10.1130/0091- 7613(2001)029<0207:ROPUOO>2.0CO;2

Hayes G., (2018), Slab2, A Comprehensive Subduction Zone Geometry Model: U.S. Geological Survey data release, https://doi.org/10.5066/F7PV6JNV.

Helmens, K. F., and T. Van der Hammen (1994), The Pliocene and Quaternary of the high plain of Bogotá (Colombia): A history of tectonic uplift, basic development and climatic change, Quat. Int., 21, 41–61.

Herd D., (1986), The 1985 Ruiz Volcano Disaster, EOS Transactions 67 (19), 457-460, AGU, https://doi.org/10.1029/EO067i019p00457-03

Hermelin, M. (2005). Desastres de Origen Natural en Colombia 1979–2004. Medellín, Colombia. Ed. Fondo editorial Universidad EAFIT, 247. ISBN: 958-8173-89-2.

Herring, T. A., T. I. Melbourne, M. H. Murray, M. A. Floyd, W. M. Szeliga, R. W. King, D. A. Phillips, C. M. Puskas, M. Santillan, and L. Wang (2016), Plate Boundary Observatory and related networks: GPS data analysis methods and geodetic products, Rev. Geophys., 54, 759–808, doi:10.1002/2016RG000529.

He X., J-P. Montilletc, R. Fernandesd, M. Bos, K. Yu, X. Hua, W. Jiang, (2017), Review of current GPS methodologies for producing accurate time series and their error sources, J. Geodynamics 106: 12–29, doi:10.1016/j.jog.2017.01.004

Hey, R., (1977). Tectonic evolution of the Cocos–Nazca spreading center, Geol. Soc. Am. Bull., 88: 1404-1420

Hudnut K. W., Y. Bock, J. E. Galetzka, F. H. Webb and W. Young (2002), The Southern California Integrated GPS Network (SCIGN), In: Seismotectonics in Convergente Plate Boundary, Eds. Y. Fujinawa and A. Yoshida, TerraPub, Tokyo, 166-189.

ICSM, (2014), Guideline for Continuously Operating Reference Stations Special Publication 1, version 2.1, Intergovernmental Committee on Survey and Mapping (ICSM) Permanent Committee on Geodesy (PCG), Australia, 43 p.

Idárraga-García, J., J.-M. Kendall, and C. A. Vargas (2016), Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics, Geochem. Geophys. Geosyst., 17, doi:10.1002/2016GC006323.

IGS, (2018), Strategic Plan 2017, WDS-IUGG-GOGOS, 44 p.

IGS, (2017), Current IGS Site Guidelines, International GNSS Service, https://kb.igs.org/hc/en-us/articles/202011433-Current-IGS-Site-Guidelines, (accessed on June 18, 2018)

IRIS, (2016), Magnitude 7.8 near the coast of Ecuador, 11 p.

Isacks, Bryan, Jack Oliver, and Lynn R. Sykes, 1968. Seismology and the new global tectonics. J. Geophys. Res. 73 (18):5855-5899. ISSN 2156-2202. doi: 10.1029/JB073i018p05855.

Johnson H.O. and D.C. Agnew, (1995), Monument motion and measurements of crustal velocities. Geophys Res Letters 22(21):2905–2908, DOI 10.1029/95GL02661

Jordan, T. H., (1975), The present-day motions of the Caribbean plate, J. Geophys. Res., 80: 4433-4439.

Julivert, M., (1970), Cover and basement tectonics in the Cordillera oriental of Colombia, South America, and a comparison with some other folded chains, GSA Bulletin 81 (12): 3623-3646, https://doi.org/10.1130/0016- 7606(1970)81[3623:CABTIT]2.0.CO;2

Kall T., T. Oja, K. Kollo and A. Liibusk (2019), The Noise Properties and Velocities from a Time-Series of Estonian Permanent GNSS Stations, Geosciences 9, 233, doi:10.3390/geosciences9050233

Kanamori H. and K. C. McNally (1982), Variable rupture mode of the subduction zone along the Ecuador-Colombia coast, Bull. Seism. Soc. A, 72, 1241-1253

Kanamori, H., (1983). Magnitude scale and quantification of earthquakes, Tectonophysics 93:185-199

Kellogg J. N. and W. E. Bonini, (1982), Subduction of the Caribbean Plate and basement uplifts in the overriding South America plate. Tectonics 1(3): 251-276.

Kellogg, J. N. & Bonini, W. E. (1985). Reply to comment on "Subduction of the Caribbean plate and basement uplifts in the overriding South American plate". Tectonics, 4 (7): 785-790.

Kellogg J. N. (1984). Cenozoic tectonic history of the Sierra de Perijá, Venezuela– Colombia, and adjacent basins, in W. Bonini, R. Hargraves, and R. Shagam, eds., The Caribbean–South American plate boundary and regional tectonics: GSA Memoir 162: 239–261.

Kellogg J. N., I. J. Ogujioford, D. R. Kansakar, (1985). Cenozoic tectonics of the Panama and North Andes blocks. Memorias Congreso Latinoamericano de Geología 6: 34-49, INGEOMINAS, Bogotá.

Kellogg J. N., and T.H. Dixon (1990), Central and South America GPS Geodesy - CASA UNO. Geophys. Res. Lett. 17 (3): 195–198, doi:10.1029/GL017i003 p00195.

Kellogg J. N., J. T. Freymueller, T. H. Dixon, R. E. Neilan, C. Ropain U., S. Camargo M., B. Fernandez C., J. L. Stowell, A. Salazar, J. Mora. V., L. Espin, V. Perdue, L. Leos, (1990). First GPS baseline results from the North Andes, Geophys. Res. Lett. 17:211-214.

Kellogg J., V. Vega V., (1995). Tectonic development of Panama, Costa Rica, and the Colombian Andes: Constraints from Global Positioning System geodesy studies and gravity., in Mann P. ed., Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America: Boulder, Colorado, Geological Society of America Special Paper 295

Kellogg J. N. and W. Mohriak (2001), Tectonic and geological environment of coastal South America. In: Seeliger, U. and Kjerfve, B. (eds.) Coastal Marine Ecosystems of Latin America: Ecological Studies, 144: 1-16.

Kellogg J. N. and H. Mora-Páez, (2016), Panama Arc-North Andes collision: Broken indenter model from new GPS velocity field, IASPEI - Regional Assembly (Latin-American and Caribbean Seismological Commission - LACSC), San José, Costa Rica.

Kellogg, J. N, G. B. Franco and H. Mora-Páez, (2019), Cenozoic tectonic evolution of the North Andes with constraints from volcanic ages, seismic reflection, and satellite geodesy, In “Andean Tectonics” (eds. B. K. Horton and A. Folguera), 69-102, Elsevier.

Kobayashi D., P. LaFemina, H. Geirsson, E. Chichaco, A. Abrego, H. Mora and E. Camacho, (2014). Kinematics of the Western Caribbean: Collision of the Cocos Ridge and Upper Plate Deformation, Geochem. Geophys. Geosyst. 15, 1671- 1683, doi:10.1002/2014GC005234.

Kroehler M., P. Mann, A. Escalona and G. L. Christeson (2011), Late Cretaceous- Miocene diachronous onset of back thrustingalong the South Caribbean deformed belt and its importancefor understanding processes of arc collision and crustal growth, Tectonics 30, TC6003, doi:10.1029/2011TC002918

Ladd, J. W., M. Truchan, M. Talwani, P. L. Stoffa, P. Buhl, R. Houtz, A. Mauffret, G. K. Westbrook, (1984). Seismic reflection profiles across the southern margin of the Caribbean, Bonini, W. E. (editor), R. B. Shagam, R. (Eds), The Caribbean- South American plate boundary and regional tectonics, Memoir - Geological Society of America, 153-159.

Langbein, J., F. Wyatt, H. Johnson, D. Hamann, and P. Zimmer, (1995), Improved stability of a deeply anchored geodetic monument for deformation monitoring, Geophys. Res. Lett., 22, 3533–3536

Langbein J. (2004), Noise in two-color electronic distance meter measurements revisited. J Geophys Res 109:B04406, DOI 10.1029/2003JB002819

Langbein, J. (2008), Noise in GPS displacement measurements from Southern California and Southern Nevada, J. Geophys. Res., 113, B05405, doi:10.1029/2007JB005247.

Langley R., (2018), Innovation: The International GNSS Service, GPS World, https://www.gpsworld.com/the-international-gnss-service-25-years-on-the- path-to-multi-gnss/ (accessed on January 20, 2019)

Li X., X. Zhang and B. Guo, (2013), Application of collocated GPS and seismic sensors to earthquake monitoring and early warning. Sensors (Basel, Switzerland), 13(11), 14261-76. doi:10.3390/s131114261

Londoño J. M., S. Quintero, K. Vallejo, F. Muñoz and J. Romero (2019), Seismicity of Valle Medio del Magdalena basin, Colombia, Journal of South American Earth Sciences 92 (2019) 565–585, https://doi.org/10.1016/j.jsames.2019.04.003

Lonsdale P., and K. D. Klitgord, (1978). Structure and tectonic history of the eastern Panama Basin. GSA. Bulletin 89, 981–999.

Lundgren, P., M. Protti, A. Donnellan, M. Heflin, E. Hernandez, D. Jefferson, (1999). Seismic cycle and plate margin deformation in Costa Rica: GPS observations from 1994 to 1997, J. Geophys. Res., 104(B12): 28,915-28,926.

Manaker D. M., E. Calais, A. M. Freed, S. T. Ali, P. Przybylski, G. Mattioli, P. Jansma, C. Prépetit, J. B. De Chabalier (2008). Interseismic Plate coupling and strain partitioning in the Northeastern Caribbean, Geophys. J. Int. 174 (3), 889– 903, doi: 10.1111/j.1365-246X.2008.03819.x

Mann, P. and R. A. Kolarsky, (1995). East Panama deformed belt; structure, age, and neotectonic significance. In: Mann P. (ed.) Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America, Geol. Soc. Am. Special Paper, 295: 111-130.

Mantilla-Pimiento A. M., G. Jentzsch, J. Kley and C. Alfonso-Pava (2009), Configuration of the Colombian Caribbean Margin: Constraints from 2D Seismic Reflection data and Potential Fields Interpretation, In Subduction Zone Geodynamics, S. Lallemand and F. Funiciello (eds.), Frontiers in Earth Sciences, Springer-Verlag Berlin Heidelberg, DOI 10.1007/978-3-540-87974-9

Marshall, L. G., S. D. Webb, J. J. Sepkoski and D. M. Raup, (1982). Mammalian evolution and the Great American Interchange, Science, 215(4538), 1351–1357.

Masters T. G and P. M. Shearer (1995), Seismic Models of the Earth: Elastic and Anelastic, In: Global Earth Physics: A Handbook of Physical Constants, AGU Reference Shelf, T. Aherens (Ed.), 88-103, https://doi.org/10.1029/RF001p0088

McCaffrey, R., (1996). Estimates of modern arc-parallel strain rates in fore arcs. Geology 24, 27-30.

McCaffrey, R., (2002). Crustal block rotations and plate coupling. In: Stein, S., Freymueller, J. (Eds.), Plate Boundary Zones. AGU Geodynamics Series 30, 101-122.

McCaffrey, R., (2005). Block kinematics of the Pacific - North America plate boundary in the southwestern US from inversion of GPS, seismological, and geologic data, Journal of Geophysical Research 110, B07401, doi:10.1029/2004JB003307

Meilano I., H. Abidin, Andreas, I. Gumilar, Sarsito, R. Hanifa, Rino, Harjono, T. Kato, Kimata, and Y. Fukuda, 2012,“Slip Rate Estimation of the Lembang Fault West Java from Geodetic Observation,” J. Disaster Res., Vol.7, No.1, pp. 12-18

Mégard, F., (1987), Cordilleran Andes and Marginal Andes: A review of Andean geology north of the Arica Elbow (18°S), In: Circum-Pacific Orogenic Belts and Evolution of the Pacific Ocean Basin, J. W. H. Monger and J. Francheteau (Eds), AGU Geodynamics Series 18: 71-95, Washington, USA

Meyer, R. P., W. D. Mooney, A. L. Hales, C. Helsley, G. P. Woollard, D. M. Hussong, L. W. Kroenke, J. E. Ramirez (1976), Project Nariño III: Refraction Observation Across a Leading Edge, Malpelo Island to the Colombian Cordillera Occidental. The geophysics of the Pacific Ocean Basin and its margin, 105-132. 10.1029/GM019p0105.

Molnar P. and L. Sykes, (1969). Tectonics of the Caribbean and Middle America Regions from Focal Mechanism and Seismicity. GSA Bull. 80: 1639-1684

Molnar P., (2018), Molnar, P. (2018), Simple concepts underlying the structure, support and growth of mountain ranges, high plateaus and other high terrain, in Mountains, Climate, and Biodiversity, edited by C. Hoorn, A. Perrigo, and A. Antonelli, Wiley, 17-36.

Montes, C., Cardona A., Jaramillo C., Pardo A., Silva J.C., Valencia V., Ayala C., Perez-Angel L.C., Rodriguez-Parra L.A., Ramirez V., Nino H., (2015). Middle Miocene closure of the Central American Seaway, Science, v. 348, 6231, 226- 229.

Montes, C., G. Bayona, A. Cardona, D.M Buchs, C. A. Silva, S. Morón, N. Hoyos, D. A. Ramírez, C. A. Jaramillo, V. Valencia, (2012). Arc-continent collision and orocline formation: Closing of the Central American seaway, Journal of Geophysical Research, v. 117, B04105, doi:10.1029/2011JB008959, 2012.

Montillet J.-P., P. Tregoning, S. McClusky and K. Yu., (2013), Extracting white noise statistics in GPS coordinate time series, IEED Geoscience and Remote Sensing Letters 10 (3): 563-567.

Mora A., Ketcham R.A., Higuera-Diaz I. C., Bookhagen B., Jimenez L., Rubiano, (2014). Formation of passive-roof duplexes in the Colombian Subandes and Peru, Lithosphere 6 no. 6, 456 – 472.

Mora Páez H., S. López., N. Acero, J. Ramírez C., E. Salcedo y R. Trenkamp, (2015), Análisis geodésico y deformación sismotectónica asociada al sismo de Quetame, Colombia, 24 de mayo de 2008. Boletín Geológico 43: 7-22, Bogotá ISSN 0120-1425

Mora-Páez H., (1994), Centro de Investigaciones y Procesamiento GPS, Fase 1, Propuesta de Proyecto, (in spanish, submitted to the Geophysics Sub- Directorate, internal communication).

Mora-Páez H., (1995), Central and South America GPS Geodesy: Relative Plate Motions Determined From 1991 and 1994

Measurements in Colombia, Costa Rica, Ecuador, Panama and Venezuela, M.S. Thesis, University of South Carolina, Columbia, 94 p.

Mora-Páez H., (2001), Geodesia aplicada: Geodesia Tectónica y Volcánica, Plan de Trabajo 1.0, (in Spanish), Submitted to the Geophysics Sub-Directorate, internal communication, April 24, 2001.

Mora-Páez H., (2002), The Nationwide Permanent GPS Array in Colombia, South America, for Geodynamics and Disasters Prevention Purposes, 13 p.

Mora-Páez H., (2006). National GPS Network for Geodynamics Research, BPIN document and supplementary information, Project Proposal, (in Spanish), submitted to the National Planning Department, Colombia, INGEOMINAS, 63 p. + 5 modules

Mora-Páez H., (2013), Utilizing Space Geodetic Techniques (GPS/GNSS) to Observe and Model Crustal Deformation in South America, Regional Model of Seismic Hazard in South America, SARA Project Workshop, GEM (Global Earthquake Model), Topic 5: Crustal Deformation from GPS/GNSS in S.A., Bogota, Colombian Geological Survey, December 4-6, 2013

Mora-Páez H., D. J. Mencin, P. Molnar, H. Diederix, L. Cardona-Piedrahita, J.-R. Peláez-Gaviria and Y. Corchuelo-Cuervo, (2016). GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes, Geophys. Res. Lett., 43, 8407-8416, doi:10.1002/2016GL069795

Mora-Páez H., J.-R. Peláez-Gaviria, H. Diederix, O. Bohórquez-Orozco, L. Cardona- Piedrahita, Y. Corchuelo-Cuervo, J. Ramírez-Cadena and F. Díaz-Mila, (2018). Space Geodesy Infrastructure in Colombia, Seismological Research Letters, Early Edition, Focus Section on Geophysical Networks and Related Developments in Latin America Published Online 14 February, 2018

Mora-Páez, H., J. N. Kellogg, J. T. Freymueller, D. Mencin, R. M. S. Fernandes, H. Diederix, P. LaFemina , L. Cardona-Piedrahita, S. Lizarazo, J.-R. Peláez- Gaviria, F. Díaz-Mila, O. Bohórquez-Orozco, L. Giraldo-Londoño,Y. Corchuelo-Cuervo, (2017). Crustal deformation in the northern Andes – Space geodesy velocity field, Submitted to Tectonophysics

Mora, A., Parra M., Strecker M.R., Sobel E. R., Hooghiemstra H., Torres V., Vallejo Jaramillo J., (2008). Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia, GSA Bulletin, v. 120, no. 7/8, p. 930-949.

Mora, A., Horton, B. K., Mesa, A., Rubiano, J., Ketcham, R. A., Parra, M., Blanco, V., Garcia, D., Stockli, D. F., (2010a). Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission track results and structural relationships: Implications for petroleum systems, AAPG Bulletin, v. 94, no. 10, 1543-1580, doi:10.1306/01051009111.

Mora A., Parra, M., Strecker, M. R., Sobel, E. R., Zeilinger, G., Jaramillo, C., Da Silva, S., and Blanco, M., (2010b). The eastern foothills of the Eastern Cordillera of Colombia: An example of multiple factors controlling structural styles and active tectonics: Geological Society of America Bulletin, v. 112, p. 1846-1864, doi:10.1130/B30033.1

Morell, K. D. (2016), Seamount, ridge, and transform subduction in southern Central America, Tectonics, 35, 357–385, doi:10.1002/2015TC003950

Mothes P. A., F. Rolandone, J.-M. Nocquet, P. Jarrin, A. P. Alvarado, M. C. Ruiz, D. Cisneros, H. Mora-Páez & M. Segovia, (2017). Coseismic Surface Slip Recorded by Continuous and High Rate GPS during the 2016 Pedernales Mw 7.8 Earthquake, Northern Andes, Ecuador-Colombia, Seismological Research Letters, Early Edition, Focus Section on Geophysical Networks and Related Developments in Latin America Published Online 14 February, 2018

Mukul M., Sridevi J., Ansari K., Matin A. and Joshi V., (2018). Structural insights from geodetic Global Positioning System measurements in the Darjiling-Sikkim Himalaya. Journal of Structural Geology. 10.1016/j.jsg.2018.03.007.

Muller, R. and M. Seton (2014), Plate Motion. In Harff, J., Meschede, M., Petersen, S., Thiede, J. (Eds.), Encyclopedia of Marine Geosciences, 669-676. Netherlands: Springer Netherlands. http://dx.doi.org/10.1007/978-94-007-6644-0_131-1"

Muntendam-Bos, A. G., M. H. P. Kleuskens, M. Bakr, G. de Lange, and P. A. Fokker, (2009). Unraveling shallow causes of subsidence: Geophysical Research Letters, v. 36.

NASA (1991). Major Emphasis Areas for Solid Earth Science in the 1990s : Report of the NASA Coolfont Workshop, NASA Technical Memorandum 4256.

Neilan, R.E., T.H. Dixon, T.K. Meehan, W. G. Melbourne, J. A. Scheid, J. N. Kellogg, J. L. Stowell, (1989). Operational aspects of CASA UNO’88 – The first large scale international GPS Geodetic Network, IEEE Transactions on Instrumentation and Measurement, 38, no. 2, 648-651.

Nilsson, T., J. Böhm, D. D. Wijaya, A. Tresch, V. Nafisi, H. Schuh (2013). Path Delays in the Neutral Atmosphere. In: Böhm J., Schuh H. (editors): Atmospheric Effects in Space Geodesy. Springer Verlag, ISBN: 978-3-642-36931-5

Nishenko, S. P., (1989). Circum-Pacific Seismic Potential 1989-1999, Open File Report 89-89, US Geological Survey, 121 p.

Nistor S. and A. S. Buda (2016), The influence of different types of noise on the velocity uncertainties in GPS time series analysis, Acta Geodyn. Geomater. 13, No. 4 (184), 387–394, DOI: 10.13168/AGG.2016.0021

Nocquet, J., J.C. Villegas-Lanza, M. Chlieh, P. A. Mothes, F. Rolandone, P. Jarrin, D. Cisneros, A. Alvarado, L. Audin, F. Bondoux, X. Martin, Y. Font, M. Régier, M. Vallée, T. Tran, C. Beauval, J. M. Maguiña Mendoza, W. Martinez, H. Tavera, H. Yepes, (2014). Motion of continental slivers and creeping subduction in the Northern Andes, Nat. Geosci., 7 (4), 287–291, doi:10.1038/NGEO2099.

Nocquet, J.M., P. Jarrin, m. Vallée, P. A. Mothes, R. Grandin, F. Rolandone, B. Delouis, H. Yepes, Y. C. Font, D. Fuentes, M. Régnier, A. Laurendeau, D. Cisneros, S. Hernandez, A. Sladen, J. C. Singaucho, H. Mora, J. Gomez, L. Monte, P. Charvis, (2017). Supercycle at the Ecuadorian subduction zone revealed after the 2016 Pedernales earthquake. Nature Geoscience. 10, 145–149. doi:10.1038/ngeo2864.

Nocquet J.-M., (2008), Analysis of Geodetic Velocity Fields, Géosciences Azur, 14 p. Norabuena E., T. Dixon, S. Stein and C. Harrison, (1999), Decelerating Nazca-South America and Nazca-Pacific Plate motions, Geophy. Res. Lett. 26 (22), 3405-3408-AGU, https://doi.org/10.1029/1999GL005394

Nugroho H., R. Harris, A. W. Lestariya, and B. Maruf, 2009, Plate boundary reorganization in the active Banda Arc–continent collision: insights from new GPS measurements. Tectonophysics 479, 52–65. https://doi.org/10.1016/j.tecto.2009.01.026.

O’Dea A., H. A. Lessios, A. G. Coates, R. I. Eytan, S. A. Restrepo-Moreno, A. L. Cione, L. S. Collins, A. de Queiroz, D. W. Farris, R. D. Norris, R. F. Stallard, M. O. Woodburne, O. Aguilera, M.-P. Aubry, W. A. Berggren, A. F. Budd, M. A. Cozzuol, S. E. Coppard, H. Duque-Caro, S. Finnegan, G. M. Gasparini, E. L. Grossman, K. G. Johnson, L. D. Keigwin, N. Knowlton, E. G. Leigh, J. S. Leonard-Pingel, P. B. Marko, N. D. Pyenson, P. G. Rachello-Dolmen, E. Soibelzon, L. Soibelzon, J. A. Todd, G. J. Vermeij, J. B. C. Jackson, (2016), Formation of the Isthmus of Panama, Sci. Adv. 2, e1600883

Ojeda J. and L. Donelly, (2006). Landslides in Colombia and their impact on towns and cities, In: 10th IAEG International Congress Proceedings, IAEG2006, Paper number 112, The Geological Society of London

OSO, (2018), Onsala Space Observatory, Chalmers University of Technology, http://holt.oso.chalmers.se/loading/tidemodels.html, (accessed on June 11, 2018)

Papamiditriou E., (1993). Long-term Earthquake Prediction along the Western Coast of South and Central America Based on a Time Predictable Model, Pure and Applied Geophysics 140 (2), 301-316 doi: 10.1007/BF00879409

Parra, M., Mora A., Jaramillo C., Strecker M. R., Sobel E. R., (2007). Cenozoic exhumation history in the northeastern Andes: New data based on low-T thermochronology and basin analysis in the Eastern Cordillera of Colombia, Geophys. Res. Abstr., 9, 07197.

Parra, M., Mora A., Sobel E.R., Strecker M.R., González R., (2009). Episodic orogenic- front migration in the northern Andes: Constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia: Tectonics, v. 28, p. TC4004, doi:10.1029/2008TC002423.

Pennington, W.D., (1981).Subduction of the Eastern Panama Basin and Seismotectonics of Northwestern South America. J. Geophys. Res. 86 (B11), 10753–10770.

Pérez, O. J., Bilham R., Bendick R., Velandia J. R., Hernández N., Moncayo C., Hoyer M., and Kozuch M., (2001). Velocity field across the Southern Caribbean plate boundary and estimates of Caribbean/South-American plate motion using GPS geodesy 1994–2000, Geophys. Res. Lett., 28(15), 2987–2990.

Pindell, J. L., R. Higgsand, J. F. Dewey (1998). Cenozoic palinspastic reconstruction, paleogeographic evolution, and hydrocarbon setting of the northern margin of South America, In Paleogeographic Evolution and Non-glacial Eustasy, Northern South America,

Pindell, J. L.and C. L. Drake (editors), Society for Sedimentary Geology, Tulsa, Oklahoma, 45–86

Pindell J. and L. Kennan, (2009), Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update, Geological Society London Special Publications 328(1):1-55, http://dx.doi.org/10.1144/SP328.1

PNUD-CEPAL, (1999). El terremoto de enero de 1999 en Colombia: Impacto socioeconómico del desastre en la zona del Eje Cafetero, Programa de las Naciones Unidas para el Desarrollo–Colombia, Comisión Económica para América Latina y el Caribe – Sede Subregional en México, 18 p.

Poli P., G.A. Prieto, C. Q. Yu, M. Florez, H. Agurto-Detzel, T.D. Mikesell, G. Chen, V. Dionicio and P. Pedraza, (2015). Complex rupture of the M6.3 2015 March 10 Bucaramanga earthquake: evidence of strong weakening process, Geophys. J. Int. (2016) 205, 988–994 doi: 10.1093/gji/ggw065

Poveda, E., G. Monsalve and C. A. Vargas, (2015). Receiver functions and crustal structure of the northwestern Andean region, Colombia. Journal of Geophysical Research: Solid Earth, 120, 2408–2425. https://doi.org/10.1002/2014JB011304

Poveda, E., J. Julià, M. Schimmel and N. Perez-Garcia, (2018). Upper and middle crustal velocity structure of the Colombian Andes from ambient noise tomography: Investigating subductionrelated magmatism in the overriding plate. Journal of Geophysical Research: Solid Earth, 123. https://doi.org/10.1002/ 2017JB014688

Prieto, G.A., Beroza, G.C., Barrett, S.A., Lopez, G.A. & Florez, M., (2012). Earthquake nests as natural laboratories for the study of intermediate depth earthquake mechanics, Tectonophysics, 570, 42–56.

Pulido N., (2003). Seismotectonics of the Northern Andes (Colombia) and the Development of Seismic Networks, IISE Bulletin, 2003 Special Edition: 69-76.

Rockwell, T. K., R. A. Bennett, E. Gath, and P. Franceschi, (2010). Unhinging an indenter: A new tectonic model for the internal deformation of Panama, Tectonics, 29, TC4027, doi:10.1029/2009TC002571.

Rossello E., and S. P. Cossey (2012), What is the evidence for subduction in the Caribbean margin of Colombia?, XI Simposio Bolivariano: PETROLEUM EXPLORATION IN SUBANDEAN BASINS “Knowledge Integration - The key to success”, Cartagena de Indias, Colombia, August 29th to September 1st, 2012, 8 p.

Rossello E., D. Barrero, J A. Osorio and J. F. Martinez (2015), El margen caribeño colombiano: es un análogo subexplorado del productor margen septentrional de Borneo (Malasia, Brunei)?, Memorias XV Congreso Colombiano de Geología 2015, "Innovar en Sinergia con el Medio Ambiente", Bucaramanga, Colombia, Agosto 31 – Septiembre 5, 2015, p. 305-310.

Rohm W., (2013), The ground GNSS tomography - unconstrained approach. Advances in Space Research 51: 501–513, DOI: 10.1016/j.asr.2012.09.021

Romero J., E. Castellanos, H. Alvarado, F. Muñoz, Y. Rodríguez, A. Amaya, D. León, D. Navarrete, A. Melo, C. Pava, R. Rodríguez, J. López, J. García (2017). Mapa de Unidades Tectónicas de Colombia, Servicio Geológico Colombiano, (spanish, in prep.).

Rudenko S, N. Schön, M. Uhlemann , and G. Gendt, (2013). Reprocessed height time series for GPS stations, Solid Earth 4: 23–41, doi:10.5194/se-4-23-2013

Ruhl, C. J., D. Melgar, R. Grapenthin, and R. M. Allen, (2017), The value of real-time GNSS to earthquake early warning, Geophys. Res. Lett., 44, 8311–8319, doi:10.1002/2017GL074502.

Ruegg J. C., Rudloff A., C. Vigny, R. Madariaga, de Chabalier J. B., J. Campos, E. Kausel, S. Barrientos, D. Dimitrov (2009), Interseismic strain accumulation Measured by GPS in the seismic gap between Constitución and Concepción in Chile, Physics. Earth and Planet. Int. 175: 78–85

Sagiya T., S. Miyazaki and T. Tada (2000), Continuos GPS Array and Present-day Crustal Deformation of Japan, Pure Appl. Geophys. 157:2303-23-22

Sagiya T., Nishimura T., Iio Y. and Tada T., (2002), Crustal deformation around the northern and central Itoigawa-Shizuoka Tectonic Line, EPS, 54, 1059–1063

Sagiya T., Nishimura T. and Iio Y., (2004), Heterogeneous crustal deformation along the central-northern Itoigawa-Shizuoka Tectonic Line Fault system, Central Japan, EPS 56, 1247–1252

Sagiya T., H. Kanamori, Y. Yagi, M. Yamada, and J. Mori, (2011), Rebuilding seismology, Nature, 473, 146–148, doi:10.1038/473146a

Sallares V. and P. Charvis, (2003), Crustal thickness constraints on the geodynamic evolution of the Galapagos volcanic province, Earth Planet. Sci .Lett. 214 (3– 4), 545–559.

Santamaría-Gómez A., M.-N. Bouin, X. Collilieux, and G. Wöppelmann (2011), Correlated errors in GPS position time series: Implications for velocity estimates, J. Geophys. Res., 116, B01405, doi:10.1029/2010JB007701.

Saylor, J., Horton, B., Stockli, D., Mora, A., Corredor, J., (2012). Structural and thermochronological evidence for Paleogene basement-involved shortening in the axial Eastern Cordillera, Colombia: Journal of South American Earth Sciences, v. 39, p. 202-215.

Schubert, C., (1984). Basin formation along the Boconó-Morón-E1Pilar Fault System, Venezuela, J. Geophys. Res., 89: 5711-5718.

Schuster R., (1991). Introduction, In: The March 5, 1987, Ecuador Earthquakes: Mass Wasting and Socioeconomic Effects, Natural Disaster Studies, Volume 5, National Academy of Sciences, 184 p., ISBN 978-0-309-04444-8, doi:10.17226/1857

Schutz B. E., C. S. Ho, P. A. M. Abusali and B. D. Tapley (1990), CASA UNO GPS Orbit and Bseline experiments, Geophysical Research Letters, 17 (5): 643-646

Sepulchre, P., Arsouze T., Donnadieu Y., Dutay J.-C., Jaramillo C., Le Bras J., Martin E., C. Montes, and Waite A. J., (2014). Consequences of shoaling of the Central American Seaway determined from modeling Nd isotopes, Paleoceanography,

29, 176–189, doi:10.1002/2013PA002501.

Segall P., (2010), Earthquake and volcano deformation, Princeton Univ. Press, Princeton NJ.

Saeid E., K. B. Bakioglu, J. Kellogg, A. Leier, J. A. Martinez and E. Guerreo, (2017), Garzón Massif basement tectonics: Structural control on evolution of petroleum systems in upper Magdalena and Putumayo basins, Colombia, Marine and Petroleun Geology 88:381-401, http://dx.doi.org/10.1016/j.marpetgeo.2017.08.035

Sella G., T. H. Dixon and A. Mao (2002), REVEL: A model for Recent plate velocities from space geodesy, JGR 107 (B4) 2081, doi: 10.1029/2000JB000033, 2002

Servicio Geológico Colombiano, (2008). El sismo de Quetame del 24 de Mayo de 2008, Aspectos sismológicos y evaluación preliminar de daños, Informe preliminar No. 2, Bogotá, Junio de 2008, Red Sismológica Nacional (in spanish), 90 p.

Servicio Geológico Colombiano, (2015). El Sismo de la frontera Colombia-Panamá del 28 de Julio de 2015, Aspectos sismológicos y movimiento fuerte, Red Sismológica Nacional (in spanish), 17 p.

Servicio Geológico Colombiano, (2015), Mapa geológico de Colombia, Escala 1:1.000.000, Compilado por J. Gómez, N. Montes, A. Nivia y H. Diederix, (in spanish), 2 hojas, Bogotá, Colombia.

Silver, E. A., D. L. Reed, J. E. Tagudin, D. J. Heil, (1990). Implications of the north and south Panama thrust belts for the origin of the Panama orocline, Tectonics, 9(2): 261-281.

Silver, E. A., J. E. Case, H. J. MacGillavry, (1975). Geophysical study of the Venezuelan borderland, Geol. Soc. Am. Bull., 86, 213-226.

Spikings, R. A., W. Winkler, D. Seward and R. Handler (2001), Along-strike variations in the thermal and tectonic response of the continental Ecuadorian Andes to the collision with heterogeneous oceanic crust. Earth and Planetary Science Letters, 186: 57-73

Spikings, R., W. Winkler, R. Hughes, and R. Handler, R. (2005). Thermochronology of allochthonous terranes in Ecuador: Unravelling the accretionary and post- accretionary history of the Northern Andes, Tectonophysics, 399, 195-220.

Spikings, R. A., P. V. Crowhurst, W. Winkler, and D. Villagomez, (2010), Syn- and postaccretionary cooling history of the Ecuadorian Andes constrained by their in-situ and detrital thermochronometric record. Journal of South American Earth Sciences 30: 121-133

Stein, S. and Sella, G., (2002). Plate Boundary Zones: Concepts and Approaches, in Plate Boundary Zones, S. Stein, and J. Freymueller, eds, Geodynamics Series 30, American Geophysical Union, Washington, D.C., p. 1-26, 10.1029/030GD01.

Suter, F., M. Sartori, R. Neuwerth, G. Gorin, G., (2008). Structural imprints at the front of the Chocó–Panama indenter: Field data from the North Cauca Basin, central Colombia, Tectonophysics 460, 134-157.

Symithe, S., Calais E., de Chabalier J. B., Robertson R., and Higgins M., (2015). Current block motions and strain accumulation on active faults in the Caribbean, J. Geophys. Res. Solid Earth, 120, 3748–3774, doi:10.1002/2014JB011779.

Taboada, A., L. A. Rivera, A. Fuenzalida, A. Cisternas, P. Hervé, B. Harmen, J. Olaya, and C. Rivera, (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia), Tectonics, 19, 787–813.

Teixell A., E. Teson, J. C. Ruiz and A. Mora, (2015), The structure of an inverted back- arc rift: Insights from a transect across the Eastern Cordillera of Colombia near Bogota, in C. Bartolini and P. Mann, eds., Petroleum geology and potential of the Colombian Caribbean Margin: AAPG Memoir 108, p. 499–516.

Tesón, E., et al. (2013), Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes, Geol. Soc. London Spec. Publ., 377, 257–283.

Thatcher W., (1995). Microplate versus continuum descriptions of active deformation. Journal of Geophysical Research. 100. 3885-3894. 10.1029/94JB03064.

Thatcher W., (2009). How the Continents Deform: The Evidence from Tectonic Geodesy, Annu. Rev. Earth Planet. Sci. 2009.37:237-262. doi: 10.1146/annurev.earth.031208.100035

Thouret J.C., (1990), Effects of the November 13, 1985 eruption on the snow pack and ice cap of Nevado del Ruiz volcano, Colombia, J. Volcanology and Geothermal Research 41: 177-201, https://doi.org/10.1016/0377-0273(90)90088-W

Toto E. A. and J. N. Kellogg (1992), Structure of the Sinu-San Jacinto fold belt. An active accretionary prism in northern Colombia, Journal of South American Earth Sciences 5 (2), 211-222.

Trenkamp R., H. Mora, E. Salcedo y J. Kellogg, (2004). Possible Rapid Strain Accumulation Rates near Cali, Colombia, determined from GPS Measurements (1996-2003), Earth Sciences Res. J. 8 (1), ISSN 1794-6190, 25-33.

Trenkamp R., J. Kellogg, J. Freymueller and H. Mora, (2002). “Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations”, Journal of South American Earth Sciences 15, Elsevier, Pergamon Press, 157-171.

Turner J. F., J. C. Iliffe , M. K. Ziebart and C. Jones, (2013), Global Ocean Tide Models: Assessment and Use within a Surface Model of Lowest Astronomical Tide, Marine Geodesy, 36:2, 123-137, doi: 10.1080/01490419.2013.771717

UNAVCO, (2016), UNAVCO Resources: GNSS Station Monumentation, http://kb.unavco.org/kb/article/unavco-resources-gnss-station-monumentation-104.htm, (accessed on June 18, 2018)

UNAVCO, (2017), EarthScope - Plate Boundary Observatory (PBO), https://www.unavco.org/projects/major-projects/pbo/pbo.html (accessed on June 19, 2018)

UNAVCO, (2018), Plate Boundary Observatory, http://pboweb.unavco.org/, (accessed on December 8, 2018).

UNAVCO, (2018), COCONet, https://coconet.unavco.org/coconet.html, (accessed on December 8, 2018).

USGS, National Earthquake Information Center, The April 16, (2016). Ecuador M 7.8 earthquake, https://earthquake.usgs.gov/earthquakes/eventpage/us20005j32#executive, (accessed on December 17, 2017)

USGS, National Earthquake Information Center, The February 9, (1967). M 7.0 Colombia earthquake, https://earthquake.usgs.gov/earthquakes/eventpage/iscgem838623#executive (accessed on December 17, 2017)

USGS, National Earthquake Information Center, The January 12, (1956). Ecuador M 7.0 earthquake, https://earthquake.usgs.gov/earthquakes/eventpage/iscgem887842#executive (accessed on December 17, 2017)

USGS, National Earthquake Information Center, The November 15, (2004). M 7.2 earthquake near the west coast of Colombia, https://earthquake.usgs.gov/earthquakes/eventpage/usp000d8gx#executive (accessed on December 17, 2017)

USGS, National Earthquake Information Center, The November 19, (1991). M 7.2 earthquake near the west coast of Colombia, https://earthquake.usgs.gov/earthquakes/eventpage/usp0004zbt#region-info, (accessed on December 17, 2017)

USGS, National Earthquake Information Center, The September 14, (2016). Mutata, Colombia, M 6 Earthquake, https://earthquake.usgs.gov/earthquakes/eventpage/us10006pdp#executive (accessed on November 7, 2017).

Vallée M., Nocquet J.-M., Battaglia J., Font Y., Segovia M., Réhnier M., Mothes P., Jarrin P., Cisneros D., Vaca S., Yepes H., Martin X., Béthoux N., Chlieh M., (2013). Intense interface seismicity triggered by a shallow slip event in the Central Ecuador subduction zone, J. Geophys. Res. Solid Earth, 118, 2965-2981, doi:10.1002/jgrb.50216

van Benthem, S. A. C., and R. Govers (2010). The Caribbean plate: Pulled, pushed, or dragged?, J. Geophys. Res., 115, B10409, doi:10.1029/2009JB006950.

van Benthem, S. A. C., R. Govers, W. Spakman, M. J. R. Wortel, (2013). Tectonic evolution and the mantle structure under the Caribbean region, J. Geophys. Res. Solid Earth, 118, 3019–3036, doi:10.1002/jgrb.50235.

van der Hammen T., J. H. Werner, and H. van Dommelen, (1973). Palynological record of the upheaval of the Northern Andes: a study of the Pliocene and Lower Quaternary of the Colombian Eastern Cordillera and the early evolution of its High-Andean biota. Palaeobot. and Palynol. 16:1-122.

van der Hilst, R. and P. Mann (1994). Tectonic implications of tomographic images subducted lithosphere beneath northwestern South America, Geology 22, pp. 451-454.

Vargas C. A., A. Caneva, H. Monsalve, F. Salcedo and H. Mora, (2018), Geophysical Networks in Colombia, Seismological Research Letters, Early Edition, Focus Section on Geophysical Networks and Related Developments in Latin America Published Online 14 February, 2018

Vaughan, S., R. J. Bailey, and D. G. Smith, (2011), Detecting cycles in stratigraphic data: Spectral analysis in the presence of red noise, Paleoceanography, 26, PA4211, doi:10.1029/2011PA002195.

Velandia F., Acosta, J., Terraza, R., Villegas, H., (2005). The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia. Tectonophysics 399 (1-4), 313-329.

Veloza G., M. Taylor, A. Mora, and J. Gosse (2015), Active mountain building along the eastern Colombian Subandes: A folding history from deformed terraces across the Tame anticline, Llanos Basin, GSA Bulletin 127 (9-10): 1155–1173, doi: https://doi.org/10.1130/B31168.1

Wallace T. C., S. L. Beck, 1993, The Oct. 17-18, (1992). Colombian earthquakes; slip partitioning or faulting complexity, Seismol. Res. Lett., 64, 29.

Wallace L.M., C. Stevens, E. Silver, R. McCaffrey, W. Loratung, S. Hasiata, R. Stanaway, R. Curley, R. Rosa, j. Taugaloidi, 2004, GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea: implications for mechanics of microplate rotations in a plate boundary zone. J. Geophys. Res. 109, B05404. https://doi.org/10.1029/2003JB002481.

Wallace L. M., R. McCaffrey, J. Beavan, and S. Ellis (2005), Rapid microplate rotations and backarc rifting at the transition between collision and subduction, Geology, 33, 857-860.

Wallace, L. M., S. Ellis, K. Miyao, S. Miura, J. Beavan, and J. Goto (2009), Enigmatic, highly active left-lateral shear zone in southwest Japan explained by aseismic ridge collision, Geology, 37, 143-146, https://doi.org/10.1130/G25221A.1

Wallace L.M., Barnes P., Beavan R.J., Van Dissen R.J., Litchfield N.J., Mountjoy J., Langridge R.M., Lamarche G., Pondard N., (2012), The kinematics of a transition from subduction to strike-slip: an example from the central New Zealand plate boundary. JGR, Solid Earth, Online doi:10.1029/2011JB008640

Wang R., F. Lorenzo-Martin and F. Roth (2006), PSGRN/PSCMP, a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on viscoelastic-gravitational dislocation theory, Computer & Geosciences 32, 527-541.

Weber, J. C., Dixon, T. H., DeMets, C., Ambeh, W. B., Jansma, P., Mattioli, G., Saleh, J., Sella, G., Bilham, R., Pérez, O., (2001). GPS estimate of relative motion between the Caribbean and South American plates, and geological implications for Trinidad and Venezuela, Geology, 29, 75-78.

Westbrook, G. K., N. C. Hardt, R. Heath, ,(1995). Structure and tectonics of the Panama-Nazca boundary. In: Mann P. (ed) Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America, Geol. Soc. Am. Special Paper, 295: 91-109.

White, S. M., Trenkamp, R., J. N. Kellogg, (2003). Recent crustal deformation and the earthquake cycle along Ecuador-Colombia subduction zone, Earth and Planetary Science Letters 216, 231-242.

Wijninga V., (1996). Paleobotany and palynology of Neogene sediments from the high plain of Bogotá, (Colombia). PhD Thesis, University of Amsterdam, Amsterdam, 370 pp.

Wijninga V. M. (1996). Neogene ecology of the Salto de Tequendama site (2475 m altitude, Cordillera Oriental, Colombia): the paleobotanical record of montane and lowland forests, Review of Palaeobotany and Palynology, 92, 97-156.

Williams S. D. P. (2003a), The effect of coloured noise on the uncertainties of rates from geodetic time series. J Geodesy 76(9-10):483–494, DOI 10.1007/s00190- 002-0283-4

Williams S. D. P. (2003b), Offsets in Global Positioning System time series, J. Geophys. Res. 108 (B6) 2310, doi:10.1029/2003JB002156

Witt C., J. Bourgois, F. Michaud, M. Ordoñez, N. Jimenez and M. Sosson (2006), Development of the Golfo de Guayaquil (Ecuador) as an effect of the North Andean block tectonic escape since the Lower Pleistocene. Tectonics 25, TC3017. doi: 10.1029/2004TC001723.

Witt C. and J. Bourgois (2010), Forearc basin formation in the tectonic wake of a collision-driven, coastwise migrating crustal block: The example of the North Andean block and the extensional Gulf of Guayaquil-Tumbes Basin (Ecuador- Peru border area). GSA Bulletin, 122(1/2): 89-108; doi: 10.1130/B26386.1

Wittmann, H., von Blanckenburg, F., Guyot, J. L., Laraque, A., Bernal, C., and Kubik, P.W., (2011). Sediment production and transport from in situ-produced cosmogenic 10Be and river loads in the Napo River basin, an upper Amazon tributary of Ecuador and Peru: Journal of South American Earth Sciences, v. 31, no. 1, p. 45-53, doi:10.1016/j.jsames.2010.09.004.

Xiaoxing H, J-P. Montillet, R. Fernandes, M. Bos, K. Yu, X. Hua, W. Jiang, (2017). Review of current GPS methodologies for producing accurate time series and their error sources, Journal of Geodynamics 106 (2017) 12–29 http://dx.doi.org/10.1016/j.jog.2017.01.004

Ye L., Kanamori H., Avouac, Jean-Philippe, Li, L., Cheung, K.F., Lay, T., (2016). The 16 April 2016, Mw 7.8 (Ms 7.5) Ecuador earthquake: a quasi-repeat of the 1942 Ms 7.5 earthquake and partial re-rupture of the 1906 Ms 8.6 Colombia-Ecuador earthquake. Earth Planet. Sci. Lett. 454, 248-258, doi.org/10.1016/j.epsl.2016.09.006.

Yepes H., Audin, L., Alvarado, A., Beauval, C., Aguilar, J., Font, Y., Cotton, F. (2016): A new view for the geodynamics of Ecuador: implication in seismogenic sources definition and seismic hazard assessment, Tectonics, 35, 5, pp. 1249— 1279. http://doi.org/10.1002/2015TC003941

Yoshimoto M., et al. (2017). Depth-dependent rupture mode along the Ecuador- Colombia subduction zone, Geophys. Res. Lett., 44, 2203–2210, doi:10.1002/2016GL071929.

Zheng G., H. Wang, T. J. Wright, Y. Lou, R. Zhang, W. Zhang, C. Chuang, H. Jinfang, W. NA (2017), Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. JGR: Solid Earth, 122, 9290–9312. https://doi.org/10.1002/2017JB014465

Zumberge J. F., M. B. Heflin, D. C. Jefferson, M. M. Watkins, F. H. Webb, (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research 102: doi: 10.1029/96JB03860. ISSN: 0148-0227.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る