リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Extended Nielsen-Ninomiya theorem for Floquet and non-Hermitian systems」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Extended Nielsen-Ninomiya theorem for Floquet and non-Hermitian systems

Bessho, Takumi 京都大学 DOI:10.14989/doctor.k23693

2022.03.23

概要

近年、高度に制御された非平衡系-Floquet系および非エルミート系-において、トポロジカル相の研究に重要な進展があった。Floquet系とは時間周期な駆動によって系のダイナミクスが決まる系であり、非エルミート系とは、その有効的なハミルトニアンが非エルミート性をもつ系である。これらの系は、平衡系で知られたトポロジカル現象を示すだけでなく、平衡系では実現不可能な新奇なトポロジカル現象も実現することが可能である。

そのような特異な現象の一つが、ニールセン=二宮の定理の破れである。ニールセン=二宮の定理とは、はじめ素粒子論の標準理論が格子理論で実現できないという禁止則として提出された定理で、固体などの格子系ではカイラルフェルミオンが実現できないという強い制限を与える。しかしながら、Floquet系・非エルミート系においては、この禁止則に従わないギャップレスフェルミオンの存在が報告されている。

このような背景のもと、本学位論文で別所氏は、Floquet系や非エルミート系というダイナミカルな系ではじめて可能となるトポロジカル不変量に着目し、それを取り入れた形にニールセン=二宮の定理を拡張し、その証明を与えた(第3章)。この拡張されたニールセン=二宮の定理は、カイラルフェルミオンと上記のトポロジカル不変量の関係を与えており、平衡系においては従来のニールセン=二宮の定理を再現すると同時に、Floquet系・非エルミート系においてはカイラルフェルミオンの存在を保証する。さらに、別所氏はこの新しい定理を応用し、非エルミートカイラル磁気効果(第4章)、および量子ウォーク系の外因的トポロジー(第5章)という新しいトポロジカル現象を報告した。以下では各内容を要約する。

まず、第3章において、Floquet系と非エルミート系に特有のトポロジカル不変量と力イラルフェルミオンの間の関係を拡張されたニールセン=二宮の定理として定式化し、その証明を与えた。とくに、Floquet系と非エルミート系という物理的には全く異なる系の間にある種の双対性が成り立つことを見出すことで、これらの系の統一的な扱いを可能とし、それによって上記の定理の証明に成功した。

次に、第4章において、拡張されたニールセン=二宮の定理を非ェルミート系に応用し、非エルミートカイラル磁気効果という現象を議論した。カイラル磁気効果とは、磁場下のカイラルフェルミオンが磁場に比例した電流を生み出すという現象であるが、通常の平衡系においてはニールセン=二宮の定理によってカイラル磁気効果が生じないことが知られている。別所氏は、非エルミート系においては、拡張されたニールセン=二宮の定理よりカイラルフェルミオンが可能となり、それによって、カイラル磁気効果が生じることを見出し、その性質を明らかにした。

最後に、第5章において、拡張されたニールセン=二宮の定理をFloquet系の一種である量子ウォーク系へ応用し、それが外因的なトポロジカル境界状態をもつことを明らかにした。通常、Floquet系のダイナミクスは、時間周期性をもつ微視的なハミルトニアンによって記述されるが、量子ウォーク系においては微視的なハミルトニアンは必ずしも存在せず、周期駆動を与えるユニタリー演算子で直接そのダイナミクスが記述される。別所氏は、この違いによって量子ウオーク系においては、バルクのダイナミクスを変化させることなく、境界の部分の局所的な変化で系の境界に生じる力イラルフェルミオンの数を変えることができることを見出した。これは、系の境界に生じるカイラルフェルミオンがバルクのトポロジカル不変量で決まるというトポロジカル相の中心原理(バルク・エッジ対応)が量子ウォーク系では変更を受けることを意味している。

参考文献

[1] H. B. Nielsen and M. Ninomiya, “Absence of neutrinos on a lattice: (I). Proof by homo- topy theory”, Nuclear Physics B 185, 20 (1981).

[2] H. B. Nielsen and M. Ninomiya, “Absence of neutrinos on a lattice: (II). Intuitive topo- logical proof”, Nuclear Physics B 193, 173 (1981).

[3] S. Higashikawa, M. Nakagawa, and M. Ueda, “Floquet chiral magnetic effect”, Phys. Rev. Lett. 123, 066403 (2019).

[4] X.-Q. Sun, M. Xiao, T. Bzdušek, S.-C. Zhang, and S. Fan, “Three-dimensional chiral lattice fermion in floquet systems”, Phys. Rev. Lett. 121, 196401 (2018).

[5] J. Y. Lee, J. Ahn, H. Zhou, and A. Vishwanath, “Topological correspondence between hermitian and non-hermitian systems: anomalous dynamics”, Phys. Rev. Lett. 123, 206404 (2019).

[6] T. Bessho and M. Sato, “Nielsen-ninomiya theorem with bulk topology: duality in floquet and non-hermitian systems”, Phys. Rev. Lett. 127, 196404 (2021).

[7] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, “Chiral magnetic effect”, Phys. Rev. D 78, 074033 (2008).

[8] T. Bessho, K. Mochizuki, H. Obuse, and M. Sato, “Extrinsic topology of floquet anoma- lous boundary states in quantum walks”, arXiv preprint arXiv:2112.03167 (2021).

[9] K. v. Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance”, Phys. Rev. Lett. 45, 494 (1980).

[10] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized hall con- ductance in a two-dimensional periodic potential”, Phys. Rev. Lett. 49, 405 (1982).

[11] M. Kohmoto, “Topological invariant and the quantization of the hall conductance”, An- nals of Physics 160, 343 (1985).

[12] C. L. Kane and E. J. Mele, “Quantum spin hall effect in graphene”, Phys. Rev. Lett. 95, 226801 (2005).

[13] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, “Classification of topological insulators and superconductors in three spatial dimensions”, Phys. Rev. B 78, 195125 (2008).

[14] A. Kitaev, “Periodic table for topological insulators and superconductors”, AIP Confer- ence Proceedings 1134, 22 (2009).

[15] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. Ludwig, “Topological insulators and superconductors: tenfold way and dimensional hierarchy”, New Journal of Physics 12, 065010 (2010).

[16] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, “Classification of topological quantum matter with symmetries”, Rev. Mod. Phys. 88, 035005 (2016).

[17] T. Morimoto and A. Furusaki, “Topological classification with additional symmetries from clifford algebras”, Phys. Rev. B 88, 125129 (2013).

[18] K. Shiozaki and M. Sato, “Topology of crystalline insulators and superconductors”, Phys. Rev. B 90, 165114 (2014).

[19] H. Sambe, “Steady states and quasienergies of a quantum-mechanical system in an os- cillating field”, Phys. Rev. A 7, 2203 (1973).

[20] J. H. Shirley, “Solution of the schrödinger equation with a hamiltonian periodic in time”, Phys. Rev. 138, B979 (1965).

[21] T. Oka and H. Aoki, “Photovoltaic hall effect in graphene”, Phys. Rev. B 79, 081406 (2009).

[22] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, “Transport properties of nonequi- librium systems under the application of light: photoinduced quantum hall insulators without landau levels”, Phys. Rev. B 84, 235108 (2011).

[23] Y. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, “Observation of floquet-bloch states on the surface of a topological insulator”, Science 342, 453 (2013).

[24] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological haldane model with ultracold fermions”, Nature 515, 237 (2014).

[25] M. Bukov, L. D’Alessio, and A. Polkovnikov, “Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to floquet engineering”, Ad- vances in Physics 64, 139 (2015).

[26] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, “Topological characterization of peri- odically driven quantum systems”, Physical Review B 82, 235114 (2010).

[27] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, “Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems”, Phys. Rev. X 3, 031005 (2013).

[28] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, “Majorana fermions in equilibrium and in driven cold-atom quantum wires”, Phys. Rev. Lett. 106, 220402 (2011).

[29] D. Carpentier, P. Delplace, M. Fruchart, and K. Gawe˛dzki, “Topological index for peri- odically driven time-reversal invariant 2d systems”, Phys. Rev. Lett. 114, 106806 (2015).

[30] J. K. Asbóth and H. Obuse, “Bulk-boundary correspondence for chiral symmetric quan- tum walks”, Phys. Rev. B 88, 121406 (2013).

[31] T. Morimoto, H. C. Po, and A. Vishwanath, “Floquet topological phases protected by time glide symmetry”, Phys. Rev. B 95, 195155 (2017).

[32] D. J. Thouless, “Quantization of particle transport”, Phys. Rev. B 27, 6083 (1983).

[33] R. Roy and F. Harper, “Periodic table for floquet topological insulators”, Phys. Rev. B 96, 155118 (2017).

[34] L. Privitera, A. Russomanno, R. Citro, and G. E. Santoro, “Nonadiabatic breaking of topological pumping”, Phys. Rev. Lett. 120, 106601 (2018).

[35] A. Altland and M. R. Zirnbauer, “Nonstandard symmetry classes in mesoscopic normal- superconducting hybrid structures”, Phys. Rev. B 55, 1142 (1997).

[36] C.-K. Chiu, H. Yao, and S. Ryu, “Classification of topological insulators and supercon- ductors in the presence of reflection symmetry”, Phys. Rev. B 88, 075142 (2013).

[37] C.-K. Chiu and A. P. Schnyder, “Classification of reflection-symmetry-protected topo- logical semimetals and nodal superconductors”, Phys. Rev. B 90, 205136 (2014).

[38] K. Mochizuki, T. Bessho, M. Sato, and H. Obuse, “Topological quantum walk with dis- crete time-glide symmetry”, Phys. Rev. B 102, 035418 (2020).

[39] T. Kitagawa, M. S. Rudner, E. Berg, and E. Demler, “Exploring topological phases with quantum walks”, Phys. Rev. A 82, 033429 (2010).

[40] T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A. Aspuru- Guzik, E. Demler, and A. G. White, “Observation of topologically protected bound states in photonic quantum walks”, Nat. Commun. 3, 1 (2012).

[41] H. Obuse, J. K. Asbóth, Y. Nishimura, and N. Kawakami, “Unveiling hidden topological phases of a one-dimensional hadamard quantum walk”, Phys. Rev. B 92, 045424 (2015).

[42] M. Nakagawa, R.-J. Slager, S. Higashikawa, and T. Oka, “Wannier representation of floquet topological states”, Phys. Rev. B 101, 075108 (2020).

[43] M. J. Rice and E. J. Mele, “Elementary excitations of a linearly conjugated diatomic polymer”, Phys. Rev. Lett. 49, 1455 (1982).

[44] B. A. Bernevig, Topological insulators and topological superconductors (Princeton Uni- versity Press, 2013).

[45] J. K. Asbóth, L. Oroszlány, and A. Pályi, “A short course on topological insulators”, Lecture notes in physics 919, 166 (2016).

[46] M. V. Berry, “Quantal phase factors accompanying adiabatic changes”, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392, 45 (1984).

[47] A. Cerjan, S. Huang, M. Wang, K. P. Chen, Y. Chong, and M. C. Rechtsman, “Experi- mental realization of a weyl exceptional ring”, Nat. Photonics 13, 623 (2019).

[48] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of -symmetry breaking in com- plex optical potentials”, Phys. Rev. Lett. 103, 093902 (2009).

[49] J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and L. Luo, “Observation of parity- time symmetry breaking transitions in a dissipative floquet system of ultracold atoms”, Nat. commun. 10, 1 (2019).

[50] V. Kozii and L. Fu, “Non-hermitian topological theory of finite-lifetime quasiparticles: prediction of bulk fermi arc due to exceptional point”, arXiv preprint arXiv:1708.05841 (2017).

[51] T. Yoshida, R. Peters, and N. Kawakami, “Non-hermitian perspective of the band struc- ture in heavy-fermion systems”, Phys. Rev. B 98, 035141 (2018).

[52] T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai, “Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry”, Phys. Rev. B 99, 121101(R) (2019).

[53] M. Papaj, H. Isobe, and L. Fu, “Nodal arc of disordered dirac fermions and non-hermitian band theory”, Phys. Rev. B 99, 201107 (2019).

[54] H. Shen and L. Fu, “Quantum oscillation from in-gap states and a non-hermitian landau level problem”, Phys. Rev. Lett. 121, 026403 (2018).

[55] M. Ezawa, “Non-hermitian higher-order topological states in nonreciprocal and recipro- cal systems with their electric-circuit realization”, Phys. Rev. B 99, 201411 (2019).

[56] X.-X. Zhang and M. Franz, “Non-hermitian exceptional landau quantization in electric circuits”, Phys. Rev. Lett. 124, 046401 (2020).

[57] G. Gamow, “Zur quantentheorie des atomkernes”, Zeitschrift für Physik 51, 204 (1928).

[58] E. Majorana, “Scattering of an α particle by a radioactive nucleus”, EJTP 3, 293 (2006).

[59] H. Feshbach, “Unified theory of nuclear reactions”, Ann. Phys. 5, 357 (1958).

[60] H. Feshbach, “Unified theory of nuclear reactions”, Ann. Phys. 19, 287 (1962).

[61] C. M. Bender and S. Boettcher, “Real spectra in non-hermitian hamiltonians having symmetry”, Phys. Rev. Lett. 80, 5243 (1998).

[62] Y. C. Hu and T. L. Hughes, “Absence of topological insulator phases in non-hermitian PT -symmetric hamiltonians”, Phys. Rev. B 84, 153101 (2011).

[63] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, “Biorthogonal bulk- boundary correspondence in non-hermitian systems”, Phys. Rev. Lett. 121, 026808 (2018).

[64] S. Yao and Z. Wang, “Edge states and topological invariants of non-hermitian systems”, Phys. Rev. Lett. 121, 086803 (2018).

[65] S. Yao, F. Song, and Z. Wang, “Non-hermitian chern bands”, Phys. Rev. Lett. 121, 136802 (2018).

[66] K. Yokomizo and S. Murakami, “Non-bloch band theory of non-hermitian systems”, Phys. Rev. Lett. 123, 066404 (2019).

[67] N. Okuma and M. Sato, “Topological phase transition driven by infinitesimal instability: majorana fermions in non-hermitian spintronics”, Phys. Rev. Lett. 123, 097701 (2019).

[68] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, “Topolog- ical phases of non-hermitian systems”, Phys. Rev. X 8, 031079 (2018).

[69] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Uni- directional invisibility induced by -symmetric periodic structures”, Phys. Rev. Lett. 106, 213901 (2011).

[70] A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity–time synthetic photonic lattices”, Nature 488, 167 (2012).

[71] L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity- time metamaterial at optical frequencies”, Nat. Mater. 12, 108 (2013).

[72] B. Peng, S¸ . K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity–time-symmetric whispering-gallery microcavities”, Nature Physics 10, 394 (2014).

[73] J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by us- ing exceptional points: application to microcavity sensors for single-particle detection”, Phys. Rev. Lett. 112, 203901 (2014).

[74] Z.-P. Liu, J. Zhang, i. m. c. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-x. Liu, “Metrology with PT -symmetric cavities: enhanced sensitivity near the PT -phase transition”, Phys. Rev. Lett. 117, 110802 (2016).

[75] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, “Enhanced sensitivity at higher-order exceptional points”, Nature 548, 187 (2017).

[76] W. Chen, S¸ . K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity”, Nature 548, 192 (2017).

[77] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, “Symmetry and topology in non- hermitian physics”, Phys. Rev. X 9, 041015 (2019).

[78] H. Zhou and J. Y. Lee, “Periodic table for topological bands with non-hermitian symme- tries”, Phys. Rev. B 99, 235112 (2019).

[79] N. Hatano and D. R. Nelson, “Localization transitions in non-hermitian quantum me- chanics”, Phys. Rev. Lett. 77, 570 (1996).

[80] N. Hatano and D. R. Nelson, “Vortex pinning and non-hermitian quantum mechanics”, Phys. Rev. B 56, 8651 (1997).

[81] N. Hatano and D. R. Nelson, “Non-hermitian delocalization and eigenfunctions”, Phys. Rev. B 58, 8384 (1998).

[82] Q. Niu, D. J. Thouless, and Y.-S. Wu, “Quantized hall conductance as a topological invariant”, Physical Review B 31, 3372 (1985).

[83] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, “Topological origin of non-hermitian skin effects”, Phys. Rev. Lett. 124, 086801 (2020).

[84] K. Kawabata, T. Bessho, and M. Sato, “Classification of exceptional points and non- hermitian topological semimetals”, Phys. Rev. Lett. 123, 066405 (2019).

[85] H. Shen, B. Zhen, and L. Fu, “Topological band theory for non-hermitian hamiltonians”, Phys. Rev. Lett. 120, 146402 (2018).

[86] Y. Ashida, Z. Gong, and M. Ueda, “Non-hermitian physics”, Advances in Physics 69, 249 (2020).

[87] A. A. Zyuzin and A. Y. Zyuzin, “Flat band in disorder-driven non-hermitian weyl semimet- als”, Phys. Rev. B 97, 041203(R) (2018).

[88] T. Matsushita, Y. Nagai, and S. Fujimoto, “Disorder-induced exceptional and hybrid point rings in weyl/dirac semimetals”, Phys. Rev. B 100, 245205 (2019).

[89] L. H. Karsten, “Lattice fermions in euclidean space-time”, Physics Letters B 104, 315 (1981).

[90] H. B. Nielsen and M. Ninomiya, “The adler-bell-jackiw anomaly and weyl fermions in a crystal”, Physics Letters B 130, 389 (1983).

[91] S. Murakami, “Phase transition between the quantum spin hall and insulator phases in 3d: emergence of a topological gapless phase”, New Journal of Physics 9, 356 (2007).

[92] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates”, Phys. Rev. B 83, 205101 (2011).

[93] A. A. Burkov, M. D. Hook, and L. Balents, “Topological nodal semimetals”, Phys. Rev. B 84, 235126 (2011).

[94] A. A. Zyuzin and A. A. Burkov, “Topological response in weyl semimetals and the chiral anomaly”, Phys. Rev. B 86, 115133 (2012).

[95] M. M. Vazifeh and M. Franz, “Electromagnetic response of weyl semimetals”, Phys. Rev. Lett. 111, 027201 (2013).

[96] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs”, Science 349, 613 (2015).

[97] N. P. Armitage, E. J. Mele, and A. Vishwanath, “Weyl and dirac semimetals in three- dimensional solids”, Rev. Mod. Phys. 90, 015001 (2018).

[98] S. Kobayashi, K. Shiozaki, Y. Tanaka, and M. Sato, “Topological blount’s theorem of odd-parity superconductors”, Phys. Rev. B 90, 024516 (2014).

[99] C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, “Topological nodal line semimetals with and without spin-orbital coupling”, Phys. Rev. B 92, 081201(R) (2015).

[100] F. Nathan and M. S. Rudner, “Topological singularities and the general classification of floquet–bloch systems”, New Journal of Physics 17, 125014 (2015).

[101] L. Zhou, C. Chen, and J. Gong, “Floquet semimetal with floquet-band holonomy”, Phys. Rev. B 94, 075443 (2016).

[102] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, “Experimental observation of the topological structure of exceptional points”, Phys. Rev. Lett. 86, 787 (2001).

[103] M. S. Rudner and L. S. Levitov, “Topological transition in a non-hermitian quantum walk”, Phys. Rev. Lett. 102, 065703 (2009).

[104] M. Sato, K. Hasebe, K. Esaki, and M. Kohmoto, “Time-Reversal Symmetry in Non- Hermitian Systems”, Progress of Theoretical Physics 127, 937 (2012).

[105] Y. C. Hu and T. L. Hughes, “Absence of topological insulator phases in non-hermitian PT -symmetric hamiltonians”, Phys. Rev. B 84, 153101 (2011).

[106] K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, “Edge states and topological phases in non-hermitian systems”, Phys. Rev. B 84, 205128 (2011).

[107] H. Schomerus, “Topologically protected midgap states in complex photonic lattices”, Opt. Lett. 38, 1912 (2013).

[108] J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte, M. S. Rudner, M. Segev, and A. Szameit, “Observation of a topological transition in the bulk of a non-hermitian system”, Phys. Rev. Lett. 115, 040402 (2015).

[109] T. E. Lee, “Anomalous edge state in a non-hermitian lattice”, Phys. Rev. Lett. 116, 133903 (2016).

[110] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori, “Edge modes, degenera- cies, and topological numbers in non-hermitian systems”, Phys. Rev. Lett. 118, 040401 (2017).

[111] L Xiao, X Zhan, Z. Bian, K. Wang, X Zhang, X. Wang, J Li, K Mochizuki, D Kim, N Kawakami, et al., “Observation of topological edge states in parity–time-symmetric quantum walks”, Nature Physics 13, 1117 (2017).

[112] M. Chernodub, “The nielsen-ninomiya theorem, pt-invariant non-hermiticity and single 8-shaped dirac cone”, Journal of Physics A: Mathematical and Theoretical 50, 385001 (2017).

[113] H. Zhou and J. Y. Lee, “Periodic table for topological bands with non-hermitian symme- tries”, Phys. Rev. B 99, 235112 (2019).

[114] K. Kawabata, K. Shiozaki, and M. Ueda, “Anomalous helical edge states in a non- hermitian chern insulator”, Phys. Rev. B 98, 165148 (2018).

[115] H. Xu, D. Mason, L. Jiang, and J. Harris, “Topological energy transfer in an optome- chanical system with exceptional points”, Nature 537, 80 (2016).

[116] S. Longhi, “Topological phase transition in non-hermitian quasicrystals”, Phys. Rev. Lett. 122, 237601 (2019).

[117] R. Okugawa and T. Yokoyama, “Topological exceptional surfaces in non-hermitian sys- tems with parity-time and parity-particle-hole symmetries”, Phys. Rev. B 99, 041202(R) (2019).

[118] F. Song, S. Yao, and Z. Wang, “Non-hermitian skin effect and chiral damping in open quantum systems”, Phys. Rev. Lett. 123, 170401 (2019).

[119] Z.-Y. Ge, Y.-R. Zhang, T. Liu, S.-W. Li, H. Fan, and F. Nori, “Topological band theory for non-hermitian systems from the dirac equation”, Phys. Rev. B 100, 054105 (2019).

[120] F. Song, S. Yao, and Z. Wang, “Non-hermitian topological invariants in real space”, Phys. Rev. Lett. 123, 246801 (2019).

[121] K.-I. Imura and Y. Takane, “Generalized bulk-edge correspondence for non-hermitian topological systems”, Phys. Rev. B 100, 165430 (2019).

[122] K. Kimura, T. Yoshida, and N. Kawakami, “Chiral-symmetry protected exceptional torus in correlated nodal-line semimetals”, Phys. Rev. B 100, 115124 (2019).

[123] W. B. Rui, M. M. Hirschmann, and A. P. Schnyder, “ -symmetric non-hermitian dirac semimetals”, Phys. Rev. B 100, 245116 (2019).

[124] K. Moors, A. A. Zyuzin, A. Y. Zyuzin, R. P. Tiwari, and T. L. Schmidt, “Disorder-driven exceptional lines and fermi ribbons in tilted nodal-line semimetals”, Phys. Rev. B 99, 041116(R) (2019).

[125] Z. Yang and J. Hu, “Non-hermitian hopf-link exceptional line semimetals”, Phys. Rev. B 99, 081102(R) (2019).

[126] L. Jin and Z. Song, “Bulk-boundary correspondence in a non-hermitian system in one dimension with chiral inversion symmetry”, Phys. Rev. B 99, 081103(R) (2019).

[127] L. Zhou, “Non-hermitian floquet topological superconductors with multiple majorana edge modes”, Phys. Rev. B 101, 014306 (2020).

[128] T. Ohashi, S. Kobayashi, and Y. Kawaguchi, “Generalized berry phase for a bosonic bogoliubov system with exceptional points”, Phys. Rev. A 101, 013625 (2020).

[129] S. Longhi, “Non-bloch-band collapse and chiral zener tunneling”, Phys. Rev. Lett. 124, 066602 (2020).

[130] Z. Yang, C.-K. Chiu, C. Fang, and J. Hu, “Jones polynomial and knot transitions in her- mitian and non-hermitian topological semimetals”, Phys. Rev. Lett. 124, 186402 (2020).

[131] C. C. Wojcik, X.-Q. Sun, T. Bzdušek, and S. Fan, “Homotopy characterization of non- hermitian hamiltonians”, Phys. Rev. B 101, 205417 (2020).

[132] Z. Yang, A. Schnyder, J. Hu, and C.-K. Chiu, “Fermion doubling theorems in 2d non- hermitian systems”, arXiv:1912.02788.

[133] K. Kawabata and S. Ryu, “Nonunitary scaling theory of non-hermitian localization”, arXiv:2005.00604.

[134] F. Terrier and F. K. Kunst, “Dissipative analogue of four-dimensional quantum hall physics”, arXiv:2003.11042.

[135] M. N. Chernodub and A. Cortijo, “Non-hermitian chiral magnetic effect in equilibrium”, Symmetry 12, 761 (2020).

[136] D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, “Non-hermitian boundary modes and topology”, Phys. Rev. Lett. 124, 056802(R) (2020).

[137] P. Titum, E. Berg, M. S. Rudner, G. Refael, and N. H. Lindner, “Anomalous floquet- anderson insulator as a nonadiabatic quantized charge pump”, Phys. Rev. X 6, 021013 (2016).

[138] J. C. Budich, Y. Hu, and P. Zoller, “Helical floquet channels in 1d lattices”, Phys. Rev. Lett. 118, 105302 (2017).

[139] M. M. Wauters, A. Russomanno, R. Citro, G. E. Santoro, and L. Privitera, “Localization, topology, and quantized transport in disordered floquet systems”, Phys. Rev. Lett. 123, 266601 (2019).

[140] K. Zhang, Z. Yang, and C. Fang, “Correspondence between winding numbers and skin modes in non-hermitian systems”,

[141] M. Sato, “Topological properties of spin-triplet superconductors and fermi surface topol- ogy in the normal state”, Phys. Rev. B 79, 214526 (2009).

[142] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological invariants for the fermi surface of a time-reversal-invariant superconductor”, Phys. Rev. B 81, 134508 (2010).

[143] M. Sato, Y. Tanaka, K. Yada, and T. Yokoyama, “Topology of andreev bound states with flat dispersion”, Phys. Rev. B 83, 224511 (2011).

[144] A. Altland and M. R. Zirnbauer, “Nonstandard symmetry classes in mesoscopic normal- superconducting hybrid structures”, Phys. Rev. B 55, 1142 (1997).

[145] D. Nakamura, T. Bessho, and M. Sato, in preparation (2021).

[146] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer, “Second-order topological insulators and superconductors with an order-two crystalline symmetry”, Phys. Rev. B 97, 205135 (2018).

[147] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, “Electric multipole moments, topo- logical multipole moment pumping, and chiral hinge states in crystalline insulators”, Phys. Rev. B 96, 245115 (2017).

[148] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, “Quantized electric multipole in- sulators”, Science 357, 61 (2017).

[149] W. A. Benalcazar, T. Li, and T. L. Hughes, “Quantization of fractional corner charge in Cn-symmetric higher-order topological crystalline insulators”, Phys. Rev. B 99, 245151 (2019).

[150] Z. Song, Z. Fang, and C. Fang, “(d 2)-dimensional edge states of rotation symmetry protected topological states”, Phys. Rev. Lett. 119, 246402 (2017).

[151] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W. Brouwer, “Reflection- symmetric second-order topological insulators and superconductors”, Phys. Rev. Lett. 119, 246401 (2017).

[152] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. Parkin, B. A. Bernevig, and T. Neupert, “Higher-order topological insulators”, Science advances 4, eaat0346 (2018).

[153] M. Ezawa, “Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices”, Phys. Rev. Lett. 120, 026801 (2018).

[154] E. Khalaf, “Higher-order topological insulators and superconductors protected by inver- sion symmetry”, Phys. Rev. B 97, 205136 (2018).

[155] A. Matsugatani and H. Watanabe, “Connecting higher-order topological insulators to lower-dimensional topological insulators”, Phys. Rev. B 98, 205129 (2018).

[156] W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in polyacetylene”, Phys. Rev. Lett. 42, 1698 (1979).

[157] A. Eckardt, “Colloquium: atomic quantum gases in periodically driven optical lattices”, Rev. Mod. Phys. 89, 011004 (2017).

[158] T. Oka and S. Kitamura, “Floquet engineering of quantum materials”, Annual Review of Condensed Matter Physics 10, 387 (2019).

[159] M. H. Kolodrubetz, F. Nathan, S. Gazit, T. Morimoto, and J. E. Moore, “Topological floquet-thouless energy pump”, Physical review letters 120, 150601 (2018).

[160] Y. Aharonov, L. Davidovich, and N. Zagury, “Quantum random walks”, Phys. Rev. A 48, 1687 (1993).

[161] J Kempe, “Quantum random walks: an introductory overview”, Contemporary Physics 44, 307 (2003).

[162] H. Obuse and N. Kawakami, “Topological phases and delocalization of quantum walks in random environments”, Physical Review B 84, 195139 (2011).

[163] D. Gross, V. Nesme, H. Vogts, and R. F. Werner, “Index theory of one dimensional quantum walks and cellular automata”, Communications in Mathematical Physics 310, 419 (2012).

[164] J. K. Asbóth, “Symmetries, topological phases, and bound states in the one-dimensional quantum walk”, Phys. Rev. B 86, 195414 (2012).

[165] B. Tarasinski, J. K. Asbóth, and J. P. Dahlhaus, “Scattering theory of topological phases in discrete-time quantum walks”, Phys. Rev. A 89, 042327 (2014).

[166] J. K. Asboth and J. M. Edge, “Edge-state-enhanced transport in a two-dimensional quan- tum walk”, Phys. Rev. A 91, 022324 (2015).

[167] C Cedzich, F. Grünbaum, C Stahl, L Velázquez, A. Werner, and R. Werner, “Bulk-edge correspondence of one-dimensional quantum walks”, Journal of Physics A: Mathemati- cal and Theoretical 49, 21LT01 (2016).

[168] F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. De Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, “Statistical moments of quantum-walk dynamics reveal topological quantum transitions”, Nature communications 7, 1 (2016).

[169] S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, and C. Silberhorn, “Mea- suring topological invariants in disordered discrete-time quantum walks”, Phys. Rev. A 96, 033846 (2017).

[170] C Cedzich, T Geib, F. Grünbaum, C Stahl, L Velázquez, A. Werner, and R. Werner, “The topological classification of one-dimensional symmetric quantum walks”, in Annales henri poincaré, Vol. 19, 2 (Springer, 2018), pp. 325–383.

[171] C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk”, Phys. Rev. Lett. 121, 100502 (2018).

[172] C Cedzich, T Geib, C Stahl, L Velázquez, A. Werner, and R. Werner, “Complete homo- topy invariants for translation invariant symmetric quantum walks on a chain”, Quantum 2, 95 (2018).

[173] C Cedzich, T Geib, A. Werner, and R. Werner, “Chiral floquet systems and quantum walks at half-period”, in Annales henri poincaré, Vol. 22, 2 (Springer, 2021), pp. 375– 413.

[174] P. W. Anderson, “Absence of diffusion in certain random lattices”, Physical review 109, 1492 (1958).

[175] S. Matsuura, P.-Y. Chang, A. P. Schnyder, and S. Ryu, “Protected boundary states in gapless topological phases”, New Journal of Physics 15, 065001 (2013).

[176] B. I. Halperin, “Quantized hall conductance, current-carrying edge states, and the exis- tence of extended states in a two-dimensional disordered potential”, Physical Review B 25, 2185 (1982).

[177] Z. Fedorova, H. Qiu, S. Linden, and J. Kroha, “Observation of topological transport quantization by dissipation in fast thouless pumps”, Nature communications 11, 1 (2020).

[178] N. Konno, “A path integral approach for disordered quantum walks in one dimension”, arXiv preprint quant-ph/0406233 (2004).

[179] A. Joye and M. Merkli, “Dynamical localization of quantum walks in random environ- ments”, Journal of Statistical Physics 140, 1025 (2010).

[180] A. Joye, “Random time-dependent quantum walks”, Communications in mathematical physics 307, 65 (2011).

[181] D. Evensky, R. Scalettar, and P. G. Wolynes, “Localization and dephasing effects in a time-dependent anderson hamiltonian”, Journal of Physical Chemistry 94, 1149 (1990).

[182] L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit, “Observation of photonic anomalous floquet topological insulators”, Nature communications 8, 1 (2017).

[183] S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Öhberg, N. Goldman, and R. R. Thomson, “Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice”, Nature communications 8, 1 (2017).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る