リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Activation of strigolactone biosynthesis by the DWARF14-LIKE/KARRIKIN-INSENSITIVE2 pathway in mycorrhizal angiosperms, but not in Arabidopsis, a non-mycorrhizal plant」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Activation of strigolactone biosynthesis by the DWARF14-LIKE/KARRIKIN-INSENSITIVE2 pathway in mycorrhizal angiosperms, but not in Arabidopsis, a non-mycorrhizal plant

Mashiguchi, Kiyoshi Morita, Ryo Tanaka, Kai Kodama, Kyoichi Kameoka, Hiromu Kyozuka, Junko Seto, Yoshiya Yamaguchi, Shinjiro 京都大学 DOI:10.1093/pcp/pcad079

2023.09

概要

Strigolactones (SLs) are a class of plant hormones that regulate many aspects of plant growth and development. SLs also improve symbiosis with arbuscular mycorrhizal fungi (AMF) in the rhizosphere. Recent studies have shown that the DWARF14-LIKE (D14L)/KARRIKIN-INSENSITIVE2 (KAI2) family, paralogs of the SL receptor D14, are required for AMF colonization in several flowering plants, including rice. In this study, we found that (−)-GR5, a 2′S-configured enantiomer of a synthetic SL analog (+)-GR5, significantly activated SL biosynthesis in rice roots via D14L. This result is consistent with a recent report, showing that the D14L pathway positively regulates SL biosynthesis in rice. In fact, the SL levels tended to be lower in the roots of the d14l mutant under both inorganic nutrient-deficient and -sufficient conditions. We also show that the increase in SL levels by (−)-GR5 was observed in other mycorrhizal plant species. In contrast, the KAI2 pathway did not upregulate the SL level and the expression of SL biosynthetic genes in Arabidopsis, a non-mycorrhizal plant. We also examined whether the KAI2 pathway enhances SL biosynthesis in the liverwort Marchantia paleacea, where SL functions as a rhizosphere signaling molecule for AMF. However, the SL level and SL biosynthetic genes were not positively regulated by the KAI2 pathway. These results imply that the activation of SL biosynthesis by the D14L/KAI2 pathway has been evolutionarily acquired after the divergence of bryophytes to efficiently promote symbiosis with AMF, although we cannot exclude the possibility that liverworts have specifically lost this regulatory system.

参考文献

Abe, S., Sado, A., Tanaka, K., Kisugi, T., Asami, K., Ota, S., et al. (2014) Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its

methyl ester can directly interact with AtD14 in vitro. Proc. Natl. Acad.

Sci. U.S.A. 111: 18084–18089.

Akiyama, K., Matsuzaki, K. and Hayashi, H. (2005) Plant sesquiterpenes

induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:

824–827.

Akiyama, K., Ogasawara, S., Ito, S. and Hayashi, H. (2010) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell

Physiol. 51: 1104–1117.

Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., et al.

(2012) The path from beta-carotene to carlactone, a strigolactone-like

plant hormone. Science 335: 1348–1351.

Andreo-Jimenez, B., Ruyter-Spira, C., Bouwmeester, H.J. and Lopez-Raez,

J.A. (2015) Ecological relevance of strigolactones in nutrient uptake

and other abiotic stresses, and in plant-microbe interactions belowground. Plant Soil 394: 1–19.

Besserer, A., Puech-Pages, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A., Roy,

S., et al. (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by

activating mitochondria. PLoS Biol. 4: e226.

Brewer, P.B., Yoneyama, K., Filardo, F., Meyers, E., Scaffidi, A., Frickey, T.,

et al. (2016) LATERAL BRANCHING OXIDOREDUCTASE acts in the final

stages of strigolactone biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci.

U.S.A. 113: 6301–6306.

Carbonnel, S., Torabi, S., Griesmann, M., Bleek, E., Tang, Y., Buchka, S.,

et al. (2020) Lotus japonicus karrikin receptors display divergent ligandbinding specificities and organ-dependent redundancy. PLoS Genet. 16:

e1009249.

Chen, Y.X., Chen, Y.S., Shi, C.M., Huang, Z.B., Zhang, Y., Li, S.K., et al. (2017)

SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7: gix120.

Choi, J., Lee, T., Cho, J., Servante, E.K., Pucker, B., Summers, W., et al.

(2020) The negative regulator SMAX1 controls mycorrhizal symbiosis

and strigolactone biosynthesis in rice. Nat. Commun. 11: 2114.

Conn, C.E. and Nelson, D.C. (2016) Evidence that KARRIKIN-INSENSITIVE2

(KAI2) receptors may perceive an unknown signal that is not karrikin or

strigolactone. Front Plant Sci. 6: 1219.

Flematti, G.R., Ghisalberti, E.L., Dixon, K.W. and Trengove, R.D. (2004) A

compound from smoke that promotes seed germination. Science 305:

977–977.

Downloaded from https://academic.oup.com/pcp/article/64/9/1066/7231466 by KYOTO UNIVERSITY Igaku Toshokan user on 19 September 2023

transferred to the agar medium (1% sucrose) without P and grown for 1 week

to induce BSB biosynthesis. As an internal standard, rac-GR24 (0.4 pmol) was

added to each sample (0.058–0.12 gFW).

Total RNA was isolated and purified using the RNeasy Plant Mini Kit (QIAGEN). The ReverTra Ace qPCR RT Master Mix with gDNA Remover (TOYOBO)

was used for cDNA synthesis. The Mx3000P system (Agilent) was used to perform qRT-PCR by using the KOD SYBR qPCR Mix (TOYOBO). The MpaACTIN

gene was used as the housekeeping gene. The primers are described in Supplementary Table S3.

BSB was analyzed by an X500R QTOF system (AB SCIEX). Purification of

BSB and LC–MS/MS conditions are shown in Supplementary Tables S4 and

S5, respectively.

Plant Cell Physiol. 64(9): 1066–1078 (2023) doi:https://doi.org/10.1093/pcp/pcad079

Nakagawa, M., Shimamoto, K. and Kyozuka, J. (2002) Overexpression

of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS

homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J. 29: 743–750.

Nelson, D.C., Scaffidi, A., Dun, E.A., Waters, M.T., Flematti, G.R., Dixon,

K.W., et al. (2011) F-box protein MAX2 has dual roles in karrikin and

strigolactone signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A.

108: 8897–8902.

Norén, H., Svensson, P. and Andersson, B. (2004) A convenient and versatile hydroponic cultivation system for Arabidopsis thaliana. Physiol. Plant

121: 343–348.

Ramírez, V., Xiong, G., Mashiguchi, K., Yamaguchi, S. and Pauly, M. (2018)

Growth- and stress-related defects associated with wall hypoacetylation

are strigolactone-dependent. Plant Direct 2: e00062.

Scaffidi, A., Waters, M.T., Sun, Y.M.K., Skelton, B.W., Dixon, K.W., Ghisalberti,

E.L., et al. (2014) Strigolactone hormones and their stereoisomers signal

through two related receptor proteins to induce different physiological

responses in Arabidopsis. Plant Physiol. 165: 1221–1232.

Seto, Y., Sado, A., Asami, K., Hanada, A., Umehara, M., Akiyama, K., et al.

(2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc. Natl. Acad. Sci. U.S.A. 111: 1640–1645.

Seto, Y., Yasui, R., Kameoka, H., Tamiru, M., Cao, M., Terauchi, R., et al.

(2019) Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nat. Commun. 10: 191.

Sisaphaithong, T., Yanase, M., Mano, T., Tanabe, S., Minami, E., Tanaka, A.,

et al. (2021) Localized expression of the Dwarf14-like2a gene in rice roots

on infection of arbuscular mycorrhizal fungus and hydrolysis of racGR24 by the encoded protein. Plant Signal Behav. 16: 2009998.

Stanga, J.P., Morffy, N. and Nelson, D.C. (2016) Functional redundancy

in the control of seedling growth by the karrikin signaling pathway.

Planta 243: 1397–1406.

Sugano, S.S., Nishihama, R., Shirakawa, M., Takagi, J., Matsuda, Y., Ishida, S.,

et al. (2018) Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS

One 13: e0205117.

Sun, H., Tao, J., Liu, S., Huang, S., Chen, S., Xie, X., et al. (2014) Strigolactones are involved in phosphate- and nitrate-deficiency-induced root

development and auxin transport in rice. J. Exp. Bot. 65: 6735–6746.

Temmerman, A., Guillory, A., Bonhomme, S., Goormachtig, S. and Struk, S.

(2022) Masks start to drop: suppressor of MAX2 1-like proteins reveal

their many faces. Front Plant Sci. 13: 887232.

Umehara, M., Cao, M., Akiyama, K., Akatsu, T., Seto, Y., Hanada,

A., et al. (2015) Structural requirements of strigolactones for shoot

branching inhibition in rice and Arabidopsis. Plant Cell Physiol. 56:

1059–1072.

Umehara, M., Hanada, A., Magome, H., Takeda-Kamiya, N. and Yamaguchi,

S. (2010) Contribution of strigolactones to the inhibition of tiller bud

outgrowth under phosphate deficiency in rice. Plant Cell Physiol. 51:

1118–1126.

Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya,

N., et al. (2008) Inhibition of shoot branching by new terpenoid plant

hormones. Nature 455: 195–200.

Wakabayashi, T., Hamana, M., Mori, A., Akiyama, R., Ueno, K., Osakabe,

K., et al. (2019) Direct conversion of carlactonoic acid to orobanchol

by cytochrome P450 CYP722C in strigolactone biosynthesis. Sci. Adv. 5:

eaax9067.

Wakabayashi, T., Yasuhara, R., Miura, K., Takikawa, H., Mizutani, M. and

Sugimoto, Y. (2021) Specific methylation of (11R)-carlactonoic acid by

an Arabidopsis SABATH methyltransferase. Planta 254: 88.

Wang, B. and Qiu, Y.L. (2006) Phylogenetic distribution and evolution

of mycorrhizas in land plants. Mycorrhiza 16: 299–363.

Waters, M.T., Gutjahr, C., Bennett, T. and Nelson, D.C. (2017) Strigolactone

signaling and evolution. Annu. Rev. Plant Biol. 68: 291–322.

Downloaded from https://academic.oup.com/pcp/article/64/9/1066/7231466 by KYOTO UNIVERSITY Igaku Toshokan user on 19 September 2023

Gomez-Roldan, V., Fermas, S., Brewer, P.B., Puech-Pages, V., Dun, E.A., Pillot,

J.P., et al. (2008) Strigolactone inhibition of shoot branching. Nature 455:

189–194.

Guercio, A.M., Torabi, S., Cornu, D., Dalmais, M., Bendahmane, A., Le

Signor, C., et al. (2022) Structural and functional analyses explain Pea

KAI2 receptor diversity and reveal stereoselective catalysis during signal

perception. Commun. Biol. 5: 126.

Gutjahr, C., Gobbato, E., Choi, J., Riemann, M., Johnston, M.G., Summers, W.,

et al. (2015) Rice perception of symbiotic arbuscular mycorrhizal fungi

requires the karrikin receptor complex. Science 350: 1521–1524.

Ishikawa, S., Maekawa, M., Arite, T., Onishi, K., Takamure, I. and Kyozuka, J.

(2005) Suppression of tiller bud activity in tillering dwarf mutants of rice.

Plant Cell Physiol. 46: 79–86.

Johnson, A.W., Rosebery, G. and Parker, C. (1976) A novel approach to Striga

and Orobanche control using synthetic germination stimulants. Weed

Res. 16: 223–227.

Kamachi, K., Yamaya, T., Mae, T. and Ojima, K. (1991) A role for glutamine synthetase in the remobilization of leaf nitrogen during natural

senescence in rice leaves. Plant Physiol. 96: 411–417.

Kameoka, H. and Kyozuka, J. (2015) Downregulation of rice DWARF 14 LIKE

suppress mesocotyl elongation via a strigolactone independent pathway

in the dark. J. Genet. Genomics 42: 119–124.

Kobae, Y., Kameoka, H., Sugimura, Y., Saito, K., Ohtomo, R., Fujiwara, T.,

et al. (2018) Strigolactone biosynthesis genes of rice are required for the

punctual entry of arbuscular mycorrhizal fungi into the roots. Plant Cell

Physiol. 59: 544–553.

Kodama, K., Rich, M.K., Yoda, A., Shimazaki, S., Xie, X., Akiyama, K., et al.

(2022) An ancestral function of strigolactones as symbiotic rhizosphere

signals. Nat. Commun. 13: 3974.

Komatsu, A., Kodama, K., Mizuno, Y., Fujibayashi, M., Naramoto, S.

and Kyozuka, J. (2023) Control of vegetative reproduction in Marchantia polymorpha by the KAI2-ligand signaling pathway. Curr. Biol. 33:

1196–1210.e4.

Li, X.R., Sun, J., Albinsky, D., Zarrabian, D., Hull, R., Lee, T., et al. (2022) Nutrient regulation of lipochitooligosaccharide recognition in plants via NSP1

and NSP2. Nat. Commun. 13: 6421.

Liu, W., Kohlen, W., Lillo, A., Op den Camp, R., Ivanov, S., Hartog, M.,

et al. (2011) Strigolactone biosynthesis in Medicago truncatula and rice

requires the symbiotic GRAS-type transcription factors NSP1 and NSP2.

Plant Cell 23: 3853–3865.

Lopez-Raez, J.A., Charnikhova, T., Gomez-Roldan, V., Matusova, R., Kohlen,

W., De Vos, R., et al. (2008) Tomato strigolactones are derived from

carotenoids and their biosynthesis is promoted by phosphate starvation.

New Phytol. 178: 863–874.

Machin, D.C., Hamon-Josse, M. and Bennett, T. (2020) Fellowship of the

rings: a saga of strigolactones and other small signals. New Phytol. 225:

621–636.

Mashiguchi, K., Seto, Y., Onozuka, Y., Suzuki, S., Takemoto, K., Wang, Y.,

et al. (2022) A carlactonoic acid methyltransferase that contributes to

the inhibition of shoot branching in Arabidopsis. Proc. Natl. Acad. Sci.

U.S.A. 119: e2111565119.

Mashiguchi, K., Seto, Y. and Yamaguchi, S. (2021) Strigolactone biosynthesis, transport and perception. Plant J. 105: 335–350.

Mikami, M., Toki, S. and Endo, M. (2015) Comparison of CRISPR/Cas9

expression constructs for efficient targeted mutagenesis in rice. Plant

Mol. Biol. 88: 561–572.

Mizuno, Y., Komatsu, A., Shimazaki, S., Naramoto, S., Inoue, K., Xie,

X., et al. (2021) Major components of the KARRIKIN INSENSITIVE2dependent signaling pathway are conserved in the liverwort Marchantia

polymorpha. Plant Cell 33: 2395–2411.

Mori, N., Nomura, T. and Akiyama, K. (2020) Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical

and non-canonical strigolactones in Lotus japonicus. Planta 251: 40.

1077

K. Mashiguchi et al. | Regulation of strigolactone biosynthesis

1078

leaf senescence in response to a phosphate deficiency. Planta 240:

399–408.

Yoneyama, K., Akiyama, K., Brewer, P.B., Mori, N., Kawano-Kawada, M.,

Haruta, S., et al. (2020) Hydroxyl carlactone derivatives are predominant

strigolactones in Arabidopsis. Plant Direct 4: e00219.

Yoneyama, K., Mori, N., Sato, T., Yoda, A., Xie, X., Okamoto, M., et al.

(2018) Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis. New Phytol. 218:

1522–1533.

Yoneyama, K., Xie, X., Kim, H.I., Kisugi, T., Nomura, T., Sekimoto, H., et al.

(2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235: 1197–1207.

Yoshida, S., Kameoka, H., Tempo, M., Akiyama, K., Umehara, M., Yamaguchi, S., et al. (2012) The D3 F-box protein is a key component in host

strigolactone responses essential for arbuscular mycorrhizal symbiosis.

New Phytol. 196: 1208–1216.

Zhang, Y., van Dijk, A.D., Scaffidi, A., Flematti, G.R., Hofmann, M.,

Charnikhova, T., et al. (2014) Rice cytochrome P450 MAX1 homologs

catalyze distinct steps in strigolactone biosynthesis. Nat. Chem. Biol. 10:

1028–1033.

Zheng, J., Hong, K., Zeng, L., Wang, L., Kang, S., Qu, M., et al. (2020) Karrikin

signaling acts parallel to and additively with strigolactone signaling to

regulate rice mesocotyl elongation in darkness. Plant Cell 32: 2780–2805.

Downloaded from https://academic.oup.com/pcp/article/64/9/1066/7231466 by KYOTO UNIVERSITY Igaku Toshokan user on 19 September 2023

Waters, M.T., Nelson, D.C., Scaffidi, A., Flematti, G.R., Sun, Y.K., Dixon,

K.W., et al. (2012) Specialisation within the DWARF14 protein family

confers distinct responses to karrikins and strigolactones in Arabidopsis.

Development 139: 1285–1295.

Waters, M.T., Scaffidi, A., Moulin, S.L., Sun, Y.K., Flematti, G.R.

and Smith, S.M. (2015) A selaginella moellendorffii ortholog of KARRIKIN INSENSITIVE2 functions in Arabidopsis development but cannot mediate responses to karrikins or strigolactones. Plant Cell 27:

1925–1944.

Wu, F., Gao, Y., Yang, W., Sui, N. and Zhu, J. (2022) Biological functions

of strigolactones and their crosstalk with other phytohormones. Front

Plant Sci. 13: 821563.

Xie, X., Kisugi, T., Yoneyama, K., Nomura, T., Akiyama, K., Uchida, K., et al.

(2017) Methyl zealactonoate, a novel germination stimulant for root

parasitic weeds produced by maize. J. Pestic. Sci. 42: 58–61.

Xie, X., Kusumoto, D., Takeuchi, Y., Yoneyama, K., Yamada, Y. and

Yoneyama, K. (2007) 2′ -epi-orobanchol and solanacol, two unique

strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J. Agric. Food Chem. 55: 8067–8072.

Xie, X., Yoneyama, K. and Yoneyama, K. (2010) The strigolactone story.

Annu. Rev. Phytopathol. 48: 93–117.

Yamada, Y., Furusawa, S., Nagasaka, S., Shimomura, K., Yamaguchi,

S. and Umehara, M. (2014) Strigolactone signaling regulates rice

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る