リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A recombinant adenovirus vector containing the synNotch receptor gene for the treatment of triple-negative breast cancer」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A recombinant adenovirus vector containing the synNotch receptor gene for the treatment of triple-negative breast cancer

A, Ruhan Kunimura, Naoto Tominaga, Shoko Hirata, Erika Nishioka, Shunya Uesugi, Misato Yamazaki, Rion Ueki, Hideto Kitagawa, Koichi Fujisawa, Masato Shirakawa, Toshiro 神戸大学

2023.03.29

概要

Triple-negative breast cancer (TNBC) is known as the most difficult molecular subtype of breast cancer to treat. Recent studies revealed that cancer stem cells (CSCs) play a critical role in TNBC recurrence and metastasis. In this study, we developed a recombinant replication-deficient adenoviral vector (Ad-CD44-N-HIF-3α4), which contains a gene encoding a synthetic Notch (synNotch) receptor composed of the extracellular domain of CD44 (CD44-ECD) and the hypoxia-inducible factor (HIF)-3α4 connected by the Notch core regulatory region. CD44 is a transmembrane glycoprotein and known as a CSC marker in breast cancer and other malignancies. HIF-3α4 is a dominant-negative regulator of HIF-1α and HIF-2α and inhibits hypoxia-inducing effect. Both CD44 and HIF signals contribute cancer stemness and maintaining CSCs in breast cancer. The CD44-ECD in the synNotch receptor acts as the CD44 decoy receptor, and after a ligand such as a hyaluronic acid binds to the CD44-ECD, HIF-3α4 is released from the Notch core domain. We performed an in vivo study using a mouse xenograft model of MDA-MB-231, a highly invasive TNBC cell, and confirmed the significant antitumor activity of the intratumoral injections of Ad-CD44-N-HIF3α4. Our findings in this study warrant the further development of Ad-CD44-N-HIF3α4 for the treatment of patients with TNBC.

この論文で使われている画像

参考文献

1. Mehanna J, Haddad FG, Eid R, Lambertini M, Kourie HR. Triple-negative breast

cancer: current perspective on the evolving therapeutic landscape. Int J Women Health

(2019) 11:431–7. doi: 10.2147/IJWH.S178349

10. Shima H, Yamada A, Ishikawa T, Endo I. Are breast cancer stem cells the key to

resolving clinical issues in breast cancer therapy? Gland Surg (2017) 6:82–8. doi:

10.21037/gs.2016.08.03

2. Alabdulkareem H, Pinchinat T, Khan S, Landers A, Christos P, Simmons R, et al.

The impact of molecular subtype on breast cancer recurrence in young women treated

with contemporary adjuvant therapy. Breast J (2018) 24:148–53. doi: 10.1111/tbj.12853

11. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF.

Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci

U.S.A. (2003) 100:3983–8. doi: 10.1073/pnas.0530291100

3. Fragomeni SM, Sciallis A, Jeruss JS. Molecular subtypes and local-regional control

of breast cancer. Surg Oncol Clin N Am (2018) 27:95–120. doi: 10.1016/

j.soc.2017.08.005

12. Sultan M, Vidovic D, Paine AS, Huynh TT, Coyle KM, Thomas ML, et al.

Epigenetic silencing of TAP1 in aldefluor+ breast cancer stem cells contributes to their

enhanced immune evasion. Stem Cells (2018) 36:641–54. doi: 10.1002/stem.2780

4. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med

(2010) 363:1938–48. doi: 10.1056/NEJMra1001389

13. Li W, Ma H, Zhang J, Zhu L, Wang C, Yang Y. Unraveling the roles of CD44/

CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep

(2017) 7:13856. doi: 10.1038/s41598-017-14364-2

5. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast

cancer: Challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol

(2016) 13:674–90. doi: 10.1038/nrclinonc.2016.66

14. Bourguignon LY, Zhu H, Shao L, Chen YW. CD44 interaction with c-src kinase

promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian

tumor cell migration. J Biol Chem (2001) 276:7327–36. doi: 10.1074/jbc.M006498200

6. Lebert JM, Lester R, Powell E, Seal M, McCarthy J. Advances in the systemic treatment

of triple-negative breast cancer. Curr Oncol (2018) 25:S142–50. doi: 10.3747/co.25.3954

15. Fujita Y, Kitagawa M, Nakamura S, Azuma K, Ishii G, Higashi M, et al. CD44

signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett (2002)

528:101–8. doi: 10.1016/S0014-5793(02)03262-3

7. Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, et al. Response to

neoadjuvant therapy and long-term survival in patients with triple-negative breast

cancer. J Clin Oncol (2008) 26:1275–81. doi: 10.1200/JCO.2007.14.4147

16. Bazil V, Horejsı́ V. Shedding of the CD44 adhesion molecule from leukocytes

induced by anti-CD44 monoclonal antibody simulating the effect of a natural receptor

ligand. J Immunol (1992) 149:747–3. doi: 10.4049/jimmunol.149.3.747

8. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, et al.

Residual breast cancers after conventional therapy display mesenchymal as well as

tumor-initiating features. Proc Natl Acad Sci U.S.A. (2009) 106:13820–5. doi: 10.1073/

pnas.0905718106

17. Murakami D, Okamoto I, Nagano O, Kawano Y, Tomita T, Iwatsubo T, et al.

Presenilin-dependent gamma-secretase activity mediates the intramembranous

cleavage of CD44. Oncogen (2003) 22:1511–6. doi: 10.1038/sj.onc.1206298

9. Lee HE, Kim JH, Kim YJ, Choi SY, Kim SW, Kang E, et al. An increase in cancer

stem cell population after primary systemic therapy is a poor prognostic factor in breast

cancer. Br J Cancer (2011) 104:1730–8. doi: 10.1038/bjc.2011.159

Frontiers in Oncology

18. Lu H, Samanta D, Xiang L, Zhang H, Hu H, Chen I, et al. Chemotherapy triggers

HIF-1-dependent glutathione synthesis and copper chelation that induces the breast

13

frontiersin.org

A et al.

10.3389/fonc.2023.1147668

42. Bytautaite M, Petrikaite V. Comparative study of lipophilic statin activity in 2D

and 3D in vitro models of human breast cancer cell lines MDA-MB-231 and MCF-7.

Onco Targets Ther (2020) 13:13201–9. doi: 10.2147/OTT.S283033

cancer stem cell phenotype. Proc Natl Acad Sci U.S.A. (2015) 112:E4600–9. doi:

10.1073/pnas.1513433112

19. Oliveira-Costa JP, Zanetti JS, Silveira GG, Soave DF, Oliveira LR, Zorgetto VA,

et al. Differential expression of HIF-1a in CD44+CD24-/low breast ductal carcinomas.

Diagn Pathol (2011) 6:73. doi: 10.1186/1746-1596-6-73

43. Roybal KT, Williams JZ, Morsut L, Rupp LJ, Kolinko I, Choe JH, et al.

Engineering T cells with customized therapeutic response programs using synthetic

notch receptors. Cell (2016) 167:419–32.e16. doi: 10.1016/j.cell.2016.09.011

20. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, et al. Hypoxia-inducible

factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell (2009) 15:501–

13. doi: 10.1016/j.ccr.2009.03.018

44. Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, et al. Precision

tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell (2016)

164:770–9. doi: 10.1016/j.cell.2016.01.011

21. Semenza GL. The hypoxic tumor microenvironment: A driving force for breast

cancer progression. Biochim Biophys Acta (2016) 1863:382–91. doi: 10.1016/

j.bbamcr.2015.05.036

45. Gordon WR, Zimmerman B, He L, Miles LJ, Huang J, Tiyanont K, et al.

Mechanical allostery: Evidence for a force requirement in the proteolytic activation of

notch. Dev Cell (2015) 33:729–36. doi: 10.1016/j.devcel.2015.05.004

22. Vadde R, Vemula S, Jinka R, Merchant N, Bramhachari PV, Nagaraju GP. Role

of hypoxia-inducible factors (HIF) in the maintenance of stemness and malignancy of

colorectal cancer. Crit Rev Oncol Hematol (2017) 113:22–7. doi: 10.1016/

j.critrevonc.2017.02.025

46. Mueller SN, Gebhardt T, Carbone FR, Heath WR. Memory T cell subsets,

migration patterns, and tissue residence. Annu Rev Immunol (2013) 31:137–61. doi:

10.1146/annurev-immunol-032712-095954

23. Kaelin WGJr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the

HIF hydroxylase pathway. Mol Cell (2008) 30:393–402. doi: 10.1016/

j.molcel.2008.04.009

47. Lecourtois M, Schweisguth F. Indirect evidence for delta-dependent intracellular

processing of notch in drosophila embryos. Curr Biol (1998) 8:771–4. doi: 10.1016/

S0960-9822(98)70300-8

24. Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving

concept. Nat Rev Cancer (2012) 12:133–43. doi: 10.1038/nrc3184

48. Cho Y, Lee H-W, Kang HG, Kim HY, Kim SJ, Chun KH. Cleaved CD44 intracellular

domain supports activation of stemness factors and promotes tumorigenesis of breast cancer.

Oncotarget (2015) 6:8709–21. doi: 10.18632/oncotarget.3325

25. Liu M, Liu Y, Deng L, Wang D, He X, Zhou L, et al. Transcriptional profiles of

different states of cancer stem cells in triple-negative breast cancer. Mol Cancer (2018)

17:65. doi: 10.1186/s12943-018-0809-x

49. Hamilton SR, Fard SF, Painwand FF, Tolg C, Veiseh M, Wang C, et al. The

hyaluronan receptors CD44 and RHAMM(CD168) from complexes with ERK1,2,

which sustains high basal motility in breast cancer cells. J Biol Chem (2007) 282:16667–

80. doi: 10.1074/jbc.M702078200

26. Kijima T, Osaki T, Nishino K, Kumagai T, Funakoshi T, Goto H, et al.

Application of the cre recombinase/loxP system further enhances antitumor effects

in cell type-specific gene therapy against carcinoembryonic antigen-producing cancer.

Cancer Res (1999) 59:4906–11.

50. Wu M, Cao M, He Y, Liu Y, Yang C, Du Y, et al. A novel role of low molecular

weight hyaluronan in breast cancer metastasis. FASEB J (2015) 29:1290–8. doi: 10.1096/

fj.14-259978

27. Semenza GL. Dynamic regulation of stem cell specification and maintenance by

hypoxia-inducible factors. Mol Asp Med (2016) 47-48:15–23. doi: 10.1016/j.mam.2015.09.004

51. Chaudhuri SR, Mallam JN, Ché vez-Barrios P, Wadhwa L, Ng P, Hurwitz MY,

et al. Modulation of adenoviral transduction in vitro and in vivo by hyaluronan and its

receptor CD44. Mol Ther (2007) 15:566–70. doi: 10.1038/sj.mt.6300044

28. Bai J, Chen WB, Zhang XY, Kang XN, Jin LJ, Zhang H, et al. HIF-2a regulates

CD44 to promote cancer stem cell activation in triple-negative breast cancer via PI3K/

AKT/mTOR signaling. World J Stem Cells (2020) 12:87–99. doi: 10.4252/wjsc.v12.i1.87

52. Sasi W, Jiang WG, Sharma A, Mokbel K. Higher expression levels of SOCS

1,3,4,7 are associated with earlier tumour stage and better clinical outcome in human

breast cancer. BMC Cancer (2010) 10:178. doi: 10.1186/1471-2407-10-178

29. Kopan R, Ilagan MX. The canonical notch signaling pathway: unfolding the

activation mechanism. Cell (2009) 137:216–33. doi: 10.1016/j.cell.2009.03.045

53. Banerjee K, Resat H. Constitutive activation of STAT3 in breast cancer cells: A

review. Int J Cancer (2016) 138:2570–8. doi: 10.1002/ijc.29923

30. Yoneda T, Kunimura N, Kitagawa K, Fukui Y, Saito H, Narikiyo K, et al.

Overexpression of SOCS3 mediated by adenovirus vector in mouse and human

castration-resistant prostate cancer cells increases the sensitivity to NK cells in vitro

and in vivo. Cancer Gene Ther (2019) 26:388–99. doi: 10.1038/s41417-018-0075-5

54. Jones KR, Elmore LW, Jackson-Cook C, Demasters G, Povirk LF, Holt SE, et al.

p53-dependent accelerated senescence induced by ionizing radiation in breast tumour

cells. Int J Radiat Biol (2005) 81:445–58. doi: 10.1080/09553000500168549

31. Wang X, Song H, Yu Q, Liu Q, Wang L, Liu Z, et al. Ad-p53 enhances the

sensitivity of triple-negative breast cancer MDA-MB-468 cells to the EGFR inhibitor

gefitinib. Oncol Rep (2015) 33:526–32. doi: 10.3892/or.2014.3665

55. Shirakawa T, Sasaki R, Gardner TA, Kao C, Zhang ZJ, Sugimura K, et al. Drugresistant human bladder-cancer cells are more sensitive to adenovirus-mediated wildtype p53 gene therapy compared to drug-sensitive cells. Int J Cancer (2001) 94:282–9.

doi: 10.1002/ijc.1453

32. Shona T, Graeme J. A cancer gene therapy approach that targets tumor-associated

hyaluronan. Cancer Growth Metastasis (2009) 2:29–43. doi: 10.4137/CGM.S3716

56. Inoue A, Narumi K, Matsubara N, Sugawara S, Saijo Y, Satoh K, et al.

Administration of wild-type p53 adenoviral vector synergistically enhances the

cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status

of p53 gene. Cancer Lett (2000) 157:105–12. doi: 10.1016/S0304-3835(00)00480-8

33. Morsut L, Roybal KT, Xiong X, Gordley RM, Coyle SM, Thomson M, et al.

Engineering customized cell sensing and response behaviors using synthetic notch

receptors. Cell (2016) 164:780–91. doi: 10.1016/j.cell.2016.01.012

34. Maynard MA, Evans AJ, Hosomi T, Hara S, Jewett MA, Ohh M. Human HIF3alpha4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell

carcinoma. FASEB J (2005) 19:191396–406. doi: 10.1096/fj.05-3788com

57. Lin W, Xie J, Xu N, Huang L, Xu A, Li H, et al. Glaucocalyxin a induces G2/M

cell cycle arrest and apoptosis through the PI3K/Akt pathway in human bladder cancer

cells. Int J Biol Sci (2018) 14:418–26. doi: 10.7150/ijbs.23602

35. Iwahori K, Serada S, Fujimoto M, Nomura S, Osaki T, Lee CM, et al.

Overexpression of SOCS3 exhibits preclinical antitumor activity against malignant

pleural mesothelioma. Int J Cancer (2011) 129:1005–17. doi: 10.1002/ijc.25716

58. Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, et al. Significance of

macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and

survival in human breast cancer. Clin Cancer Res (2000) 6:3282–9.

36. Miyake S, Makimura M, Kanegae Y, Harada S, Sato Y, Takamori K, et al.

Efficient generation of recombinant adenoviruses using adenovirus DNAterminal

protein complex and a cosmid bearing the full-length virus genome. Proc Natl Acad

Sci USA (1996) 93:1320–24. doi: 10.1073/pnas.93.3.1320

59. Saji H, Koike M, Yamori T, Saji S, Seiki M, Matsushima K, et al. Significant

correlation of monocyte chemoattractant protein-1 expression with neovascularization

and progression of breast carcinoma. Cancer (2001) 92:1085–91. doi: 10.1002/10970142(20010901)92:5<1085::AID-CNCR1424>3.0.CO;2-K

37. Saito H, Kitagawa K, Yoneda T, Fukui Y, Fujsawa M, Bautista D, et al.

Combination of p53-DC vaccine and rAd-p53 gene therapy induced CTLs cytotoxic

against p53-deleted human prostate cancer cells in vitro. Cancer Gene Ther (2017)

24:289–96. doi: 10.1038/cgt.2017.21

60. Kachamakova-Trojanowska N, Podkalicka P, Bogacz T, Barwacz S, Jó zkowicz A,

Dulak J, et al. HIF-1 stabilization exerts anticancer effects in breast cancer cells in vitro

and in vivo. Biochem Pharmacol (2020) 175:113922. doi: 10.1016/j.bcp.2020.113922

61. Fiebig AA, Zhu W, Hollerbach C, Leber B, Andrews DW. Bcl-XL is qualitatively

different from and ten times more effective than bcl-2 when expressed in a breast cancer

cell line. BMC Cancer (2006) 6:213. doi: 10.1186/1471-2407-6-213

38. Goto H, Osaki T, Kijima T, Nishino K, Kumagai T, Funakoshi T, et al. Gene

therapy utilizing the Cre/loxP system selectively suppresses tumor growth of

disseminated carcinoembryonic antigen-producing cancer cells. Int J Cancer (2001)

94:414–19. doi: 10.1002/ijc.1474

39. Bray S, Musisi H, Bienz M. Bre1 is required for notch signaling and histone

modification. Dev Cell (2005) 8:279–86. doi: 10.1016/j.devcel.2004.11.020

62. Okazaki M, Fushida S, Tsukada T, Kinoshita J, Oyama K, Miyashita T, et al. The

effect of HIF-1a and PKM1 expression on acquisition of chemoresistance. Cancer

Manag Res (2018) 10:1865–74. doi: 10.2147/CMAR.S166136

40. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong

JS, et al. Isolation of a common receptor for coxsackie b viruses and adenoviruses 2 and

5. Science (1997) 275:1320–3. doi: 10.1126/science.275.5304.1320

63. Jiang L, Greenwood TR, Artemov D, Raman V, Winnard PTJr, Heeren RM,

et al. Localized hypoxia results in spatially heterogeneous metabolic signatures in breast

tumor models. Neoplasia (2012) 14:732–41. doi: 10.1593/neo.12858

41. Bernert B, Porsch H, Heldin P. Hyaluronan synthase 2 (HAS2) promotes breast

cancer cell invasion by suppression of tissue metalloproteinase inhibitor 1 (TIMP-1). J

Biol Chem (2011) 286:42349–59. doi: 10.1074/jbc.M111.278598

64. Li Y, He W, Wang R, Yang L, Zhou C, Zhang B. Antitumor effects of

recombinant human adenovirus-p53 against human cutaneous squamous cell

carcinoma in mice. Exp Ther Med (2016) 12:4159–67. doi: 10.3892/etm.2016.3901

Frontiers in Oncology

14

frontiersin.org

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る