リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Uniqueness and existence of viscosity solutions under a degenerate dynamic boundary condition」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Uniqueness and existence of viscosity solutions under a degenerate dynamic boundary condition

Hamamuki, Nao 北海道大学

2020.04.02

概要

We consider the initial boundary value problem for a fully-nonlinear parabolic equation in a half space. The boundary condition we study is a degenerate one in the sense that it does not depend on the normal derivative on the boundary. A typical example is a stationary boundary condition prescribing the value of the time derivative of the unknown function. Our setting also covers the classical Dirichlet boundary condition. We establish a comparison principle for a viscosity sub- and supersolution under a weak continuity assumption on the solutions on the boundary. We also prove existence of solutions and give some examples of solutions under several boundary conditions. We show among other things that, in the sense of viscosity solutions, the stationary boundary condition can be different from the Dirichlet boundary condition which is obtained by integrating the stationary condition.

この論文で使われている画像

参考文献

[1] E. S. Al-Aidarous, E. O. Alzahrani, H. Ishii, A. M. M. Younas, Asymptotic analysis for the eikonal equation with the dynamical boundary conditions, Math. Nachr. 287 (2014), 1563–1588.

[2] G. Barles, Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations, J. Differential Equations 106 (1993), 90–106.

[3] G. Barles, Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications, J. Differential Equations 154 (1999), 191–224.

[4] M. Bardi, I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems Control Found. Appl., Birkh¨auser Boston, Inc., Boston, MA, 1997, with appendices by Maurizio Falcone and Pierpaolo Soravia.

[5] W. K. Burton, N. Cabrera, F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Philos. Trans. Roy. Soc. London. Ser. A. 243 (1951), 299–358.

[6] M. Bardi, P. Soravia, A comparison result for Hamilton-Jacobi equations and applications to some differential games lacking controllability, Funkcial. Ekvac. 37 (1994), 19–43.

[7] P. Cannarsa, C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and their Applications 58, Birkh¨auser Boston, Inc., Boston, MA, 2004.

[8] M. G. Crandall, H. Ishii, P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1–67.

[9] C. M. Elliott, Y. Giga, S. Goto, Dynamic boundary conditions for Hamilton-Jacobi equations, SIAM J. Math. Anal. 34 (2003), 861–881.

[10] J. Guerand, Effective nonlinear Neumann boundary conditions for 1D nonconvex Hamilton-Jacobi equa- tions, J. Differential Equations 263 (2017), 2812–2850.

[11] Y. Giga, Surface evolution equations: A level set approach, Monographs in Mathematics 99, Birkh¨auser Verlag, Basel, 2006.

[12] Y. Giga, N. Hamamuki, Hamilton-Jacobi equations with discontinuous source terms, Comm. Partial Differential Equations 38 (2013), 199–243.

[13] Y. Giga, N. Hamamuki, On a dynamic boundary condition for singular degenerate parabolic equations in a half space, NoDEA Nonlinear Differential Equations Appl. 25 (2018), Art. 51, 39 pp.

[14] N. Hamamuki, Q. Liu, A deterministic game interpretation for fully nonlinear parabolic equations with dynamic boundary conditions, to appear in ESAIM Control Optim. Calc. Var.

[15] N. Hamamuki, Q. Liu, A game-theoretic approach to dynamic boundary problems for level-set curvature flow equations and applications, preprint.

[16] H. Ishii, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989), 105–135.

[17] C. Imbert, R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Ann. Sci. E´c. Norm. Sup´er. (4) 50 (2017), 357–448.

[18] C. Imbert, R. Monneau, Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi- dimensional case, Discrete Contin. Dyn. Syst. 37 (2017), 6405–6435.

[19] P.-L. Lions, P. E. Souganidis, Well-posedness for multi-dimensional junction problems with Kirchhoff- type conditions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28 (2017), 807–816.

[20] M. Ohara, R. C. Reid, Modeling crystal growth rates from solution, Prentice-Hall, Englewood Cliffs, NJ, 1973.

[21] G. Sazaki, S. Zepeda, S. Nakatsubo, E. Yokoyama, Y. Furukawa, Elementary steps at the surface of ice crystals visualized by advanced optical microscopy, Proc. Nat. Acad. Sci. USA. 107 (2010), 19702–19707.

[22] E. Yokoyama, Y. Giga, P. Rybka, A microscopic time scale approximation to the behavior of the local slope on the faceted surface under a nonuniformity in supersaturation, Phys. D 237 (2008), 2845–2855.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る