リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Relation between the insulin lowering rate and changes in bone mineral density: Analysis among subtypes of type 1 diabetes mellitus」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Relation between the insulin lowering rate and changes in bone mineral density: Analysis among subtypes of type 1 diabetes mellitus

Suzuki, Masaki Urai, Shin Fukuoka, Hidenori Hirota, Yushi Yamamoto, Masaaki Okada, Yuko Yamamoto, Naoki Shichi, Hiroki Fujita, Yasunori Kanie, Keitaro Iguchi, Genzo Takahashi, Yutaka Ogawa, Wataru 神戸大学

2022.09.01

概要

Abstract Aims/Introduction The bone mineral density in patients with type 1 diabetes mellitus is reduced due to impaired insulin secretion. However, it is unclear whether the rate of bone mineral density reduction is affected by the type 1 diabetes mellitus subtype. This study aimed to clarify the difference in bone mineral density across type 1 diabetes mellitus subtypes: slowly progressive (SP), acute-onset (AO), and fulminant (F). Methods This was a retrospective, single-center, cross-sectional study conducted on 98 adult type 1 diabetes mellitus patients. The main outcome included the bone mineral density Z-score (BMD-Z) measured at the lumbar spine and femoral neck. Results The lumbar spine BMD-Z was lower in the acute-onset than in the slowly progressive subtype (P = 0.03). No differences were observed when compared with the fulminant subtype. The femoral neck BMD-Z tended to be higher in the slowly progressive than in the acute-onset and fulminant subtypes. Multiple regression analyses showed that the lumbar spine BMD-Z was associated with subtypes (AO vs SP) (P = 0.01), but not subtypes (F vs SP), adjusted for sex, duration, retinopathy, and C-peptide immunoreactivity (CPR). When the patients were divided into disease duration tertiles, in the first and second tertiles, the CPR levels were lower in the acute-onset or fulminant than in the slowly progressive subtype. In contrast, the lumbar spine and femoral neck BMD-Z differed between the acute-onset and slowly progressive only in the second tertiles (both P < 0.01), with a similar tendency between the fulminant and slowly progressive subtypes. Conclusions Among the type 1 diabetes mellitus subtypes, bone mineral density undergoes time-dependent changes, which reveals that the bone mineral density decline follows the impaired insulin secretion. These results provide novel insights into the association between the low insulin exposure duration and bone mineral density.

この論文で使われている画像

参考文献

1. Napoli N, Chandran M, Pierroz DD, et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol 2017; 13: 208–219.

2. Ferrari SL, Abrahamsen B, Napoli N, et al. Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporos Int 2018; 29: 2585–2596.

3. Dhaon P, Shah VN. Type 1 diabetes and osteoporosis: a review of literature. Indian J Endocrinol Metab 2014; 18: 159– 165.

4. Shah VN, Shah CS, Snell-Bergeon JK. Type 1 diabetes and risk of fracture: meta-analysis and review of the literature. Diabet Med 2015; 32: 1134–1142.

5. Miao J, Brismar K, Nyr´en O, et al. Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care 2005; 28: 2850–2855.

6. Hothersall EJ, Livingstone SJ, Looker HC, et al. Contemporary risk of hip fracture in type 1 and type 2 diabetes: a national registry study from Scotland. J Bone Miner Res 2014; 29: 1054–1060.

7. Nicodemus KK, Folsom AR, Iowa Women’s Health Study. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 2001; 24: 1192–1197.

8. Shah VN, Harrall KK, Shah CS, et al. Bone mineral density at femoral neck and lumbar spine in adults with type 1 diabetes: a meta-analysis and review of the literature. Osteoporos Int 2017; 28: 2601–2610.

9. Maggio AB, Ferrari S, Kraenzlin M, et al. Decreased bone turnover in children and adolescents with well controlled type 1 diabetes. J Pediatr Endocrinol Metab 2010; 23: 697–707.

10. Lumachi F, Camozzi V, Tombolan V, et al. Bone mineral density, osteocalcin, and bone-specific alkaline phosphatase in patients with insulin-dependent diabetes mellitus. Ann N Y Acad Sci 2009; 1173(Suppl 1): E64–E67.

11. Avnet S, Perut F, Salerno M, et al. Insulin receptor isoforms are differently expressed during human osteoblastogenesis. Differentiation 2012; 83: 242–248.

12. Lo´pez-Ibarra PJ, Pastor MM, Escobar-Jim´enez F, et al. Bone mineral density at time of clinical diagnosis of adult-onset type 1 diabetes mellitus. Endocr Pract 2001; 7: 346–351.

13. Montalcini T, Gallotti P, Coppola A, et al. Association between low C-peptide and low lumbar bone mineral density in postmenopausal women without diabetes. Osteoporos Int 2015; 26: 1639–1646.

14. Tanaka S, Ohmori M, Awata T, et al. Diagnostic criteria for slowly progressive insulin-dependent (type 1) diabetes mellitus (SPIDDM) (2012): report by the Committee on Slowly Progressive Insulin-Dependent (Type 1) Diabetes Mellitus of the Japan Diabetes Society. Diabetol Int 2015; 6: 1–7.

15. Kawasaki E, Maruyama T, Imagawa A, et al. Diagnostic criteria for acute-onset type 1 diabetes mellitus (2012): Report of the Committee of Japan Diabetes Society on the Research of Fulminant and Acute-onset Type 1 Diabetes Mellitus. J Diabetes Investig 2014; 5: 115–118.

16. Imagawa A, Hanafusa T, Awata T, et al. Report of the Committee of the Japan Diabetes Society on the Research of Fulminant and Acute-onset Type 1 Diabetes Mellitus: New diagnostic criteria of fulminant type 1 diabetes mellitus (2012). J Diabetes Investig 2012; 3: 536–539.

17. Isojima T, Shimatsu A, Yokoya S, et al. Standardized centile curves and reference intervals of serum insulin-like growth factor-I (IGF-I) levels in a normal Japanese population using the LMS method. Endocr J 2012; 59: 771–780.

18. Tesfaye S, Boulton AJ, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010; 33: 2285–2293.

19. American Diabetes Association. 11. Microvascular complications and foot care: standards of medical care in diabetes – 2020. Diabetes Care 2020; 43: S135–S151.

20. Melmed S, Polonsky KS, Larsen PR, et al. Williams’ Textbook of Endocrinology, 13th edn. Philadelphia: Elsevier Health Sciences, 2015.

21. Szyman´ska M, Michałus I, Kaszkowiak M, et al. Metabolic bone markers can be related to preserved insulin secretion in children with newly diagnosed type 1 diabetes. Pediatr Endocrinol Diabetes Metab 2020; 26: 10–16.

22. Agnoletti D, Mansour AS, Zhang Y, et al. Clinical interaction between diabetes duration and aortic stiffness in type 2 diabetes mellitus. J Hum Hypertens 2017; 31: 189–194.

23. Zoppini G, Bonapace S, Bergamini C, et al. Evidence of left atrial remodeling and left ventricular diastolic dysfunction in type 2 diabetes mellitus with preserved systolic function. Nutr Metab Cardiovasc Dis 2016; 26: 1026–1032.

24. Hough FS, Pierroz DD, Cooper C, et al. Mechanisms in endocrinology: mechanisms and evaluation of bone fragility in type 1 diabetes mellitus. Eur J Endocrinol 2016; 174: R127–R138.

25. Rozadilla A, Nolla JM, Montan~a E, et al. Bone mineral density in patients with type 1 diabetes mellitus. Joint Bone Spine 2000; 67: 215–218.

26. Leidig-Bruckner G, Grobholz S, Bruckner T, et al. Prevalence and determinants of osteoporosis in patients with type 1 and type 2 diabetes mellitus. BMC Endocr Disord 2014; 14: 33.

27. Eller-Vainicher C, Zhukouskaya VV, Tolkachev YV, et al. Low bone mineral density and its predictors in type 1 diabetic patients evaluated by the classic statistics and artificial neural network analysis. Diabetes Care 2011; 34: 2186–2191.

28. Nyman JS, Kalaitzoglou E, Clay Bunn R, et al. Preserving and restoring bone with continuous insulin infusion therapy in a mouse model of type 1 diabetes. Bone Rep 2017; 7: 1–8.

29. He J, Rosen CJ, Adams DJ, et al. Postnatal growth and bone mass in mice with IGF-I haploinsufficiency. Bone 2006; 38: 826–835.

30. Lundeen GA, Knecht SL, Vajda EG, et al. The contribution of cortical and cancellous bone to dual-energy x-ray absorptiometry measurements in the female proximal femur. Osteoporos Int 2001; 12: 192–198.

31. Mastrandrea LD, Wactawski-Wende J, Donahue RP, et al. Young women with type 1 diabetes have lower bone mineral density that persists over time. Diabetes Care 2008; 31: 1729–1735.

32. Kream BE, Smith MD, Canalis E, et al. Characterization of the effect of insulin on collagen synthesis in fetal rat bone. Endocrinology 1985; 116: 296–302.

33. Ogata N, Chikazu D, Kubota N, et al. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest 2000; 105: 935–943.

34. Akune T, Ogata N, Hoshi K, et al. Insulin receptor substrate-2 maintains predominance of anabolic function over catabolic function of osteoblasts. J Cell Biol 2002; 159: 147–156.

35. Giustina A, Berardelli R, Gazzaruso C, et al. Insulin and GH- IGF-I axis: endocrine pacer or endocrine disruptor? Acta Diabetol 2015; 52: 433–443.

36. Ekman B, Nystro€m F, Arnqvist HJ. Circulating IGF-I concentrations are low and not correlated to glycaemic control in adults with type 1 diabetes. Eur J Endocrinol 2000; 143: 505–510.

37. Hawa MI, Kolb H, Schloot N, et al. Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: action LADA 7. Diabetes Care 2013; 36: 908–913.

38. Jin Y, Sharma A, Carey C, et al. The expression of inflammatory genes is upregulated in peripheral blood of patients with type 1 diabetes. Diabetes Care 2013; 36: 2794–2802.

39. Nishimura A, Matsumura K, Kikuno S, et al. Slowly progressive type 1 diabetes mellitus: current knowledge and future perspectives. Diabetes Metab Syndr Obes 2019; 12: 2461–2477.

40. Ros´ario PW, Reis JS, Amim R, et al. Comparison of clinical and laboratory characteristics between adult-onset type 1 diabetes and latent autoimmune diabetes in adults. Diabetes Care 2005; 28: 1803–1804.

41. Fadiga L, Saraiva J, Catarino D, et al. Adult-onset autoimmune diabetes: comparative analysis of classical and latent presentation. Diabetol Metab Syndr 2020; 12: 107.

42. Hern´andez M, Lo´pez C, Real J, et al. Preclinical carotid atherosclerosis in patients with latent autoimmune diabetes in adults (LADA), type 2 diabetes and classical type 1 diabetes. Cardiovasc Diabetol 2017; 16: 94.

43. Hu Y, Li X, Yan X, et al. Bone mineral density spectrum in individuals with type 1 diabetes, latent autoimmune diabetes in adults, and type 2 diabetes. Diabetes Metab Res Rev 2021; 37: e3390.

44. Roggen I, Gies I, Vanbesien J, et al. Trabecular bone mineral density and bone geometry of the distal radius at completion of pubertal growth in childhood type 1 diabetes. Horm Res Paediatr 2013; 79: 68–74.

45. Imagawa A, Hanafusa T, Miyagawa J, et al. A novel subtype of type 1 diabetes mellitus characterized by a rapid onset and an absence of diabetes-related antibodies. Osaka IDDM Study Group. N Engl J Med 2000; 342: 301–307.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る