リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Accumbal D2R-medium spiny neurons regulate aversive behaviors through PKA-Rap1 pathway」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Accumbal D2R-medium spiny neurons regulate aversive behaviors through PKA-Rap1 pathway

林, 祐新 名古屋大学

2021.07.20

概要

【Introduction】
 It is well established that accumbal D2R-MSN, one of the main components of nucleus accumbens (NAc), controls aversive learning. Previous reports have shown that aversive stimulus, i.e. electric footshock, activates only D2R-MSN through protein kinase A (PKA). However, the molecular mechanism of how accumbal D2R-MSN controls aversive learning remains unclear. Electric shock is known to decrease dopamine release in NAc core, resulting in activated D2R- MSN due to the attenuated effect of D2R, a Gi-coupled receptor that inhibits PKA signaling. When dopamine level is less dominant in NAc, D2R-MSN is activated by various neuromodulators and neurotransmitters, including adenosine. D2R-MSN expresses adenosine A2A receptor (A2AR), a Gs-coupled receptor that activates PKA. Based on our lab’s previous report that D2R antagonist activates A2AR-PKA signaling through Rap1GAP phosphorylation in D2R-MSN in vivo, we aim to clarify adenosine-A2AR signaling in D2R-MSN that controls aversive learning. In this study, we monitored the phosphorylation level of Rap1gap S563 and the effect of A2aR antagonist on Rap1gap phosphorylation after electric foot shock aversive stimulus. We also examined the impact of AAV-mediated manipulation of PKA-Rap1 pathway in accumbal D2R-MSN on aversive behaviors in passive avoidance tests and real-time place aversion tests. Our findings suggested that accumbal D2R-MSNs regulate aversive behaviors through the A2aR-PKA-Rap1-MEK pathway.

【Materials and Result】
1. A2aR mediating PKA-Rap1 signaling is involved in aversive learning.
 To determine whether Rap1gap phosphorylation in accumbal D2R-MSNs responds to aversive stimulus, we investigated the anatomical profile of phosphorylated Rap1gap-positive cells in the NAc of Drd2-YFP transgenic mice by immunohistochemistry. The phosphorylated Rap1gap S563-positive cells in the NAc significantly increased in vehicle-treated group 60 min after exposure to electric foot shock (0.4 mA, 60 Hz, 2 sec) compared with that in vehicle- treated control mice without shock. Pretreatment with KW6002 decreased the number of phosphorylated Rap1gap S563-positive cells evoked by the electric foot shock (Fig. 1A).
 To further investigate the role of PKA-Rap1 signaling in D2R-MSN, we performed passive avoidance tests, which are fear-motivated tests classically used to assess memory on laboratory animals. We used Cre-Flex system to express dominant negative mutant PKA (PKAdn) and SPA1 (SPA1ca) in the accumbal D2R-MSNs. The PKAdn is a cAMP-binding domain that leads to the inhibition of PKA activity. And SPA1ca was used to inhibit the Rap1 activity in D2R-MSNs. Three weeks after the AAV injection, Adora2a-Cre transgenic mice were subjected to the passive avoidance test. Compared with an mCherry- expressed control group, Adora2a-Cre mice expressing PKAdn and SPA1ca showed significantly decreased step-through latency (p<0.01, Fig. 1B and C). On the other hand, adora2a-Cre transgenic mice were injected with AAV encoding wild-type PKA (PKAwt), constitutively active mutant PKA (PKAca), wild-type Rap1 (Rap1wt), or constitutively active mutant Rap1 (Rap1ca) into the NAc. PKAca is a PKA catalytic subunit that is not regulated by cAMP whereas Rap1ca is a fast-cycling variant of Rap1a. As expected, the step- through latency of PKAca or Rap1ca-expressed Adora2a-Cre transgenic mice significantly increased compared with mCherry-expressed control mice (p<0.05 Fig. 1D and E). These results indicated that PKA-Rap1 signaling in accumbal D2R-MSN plays a critical role in aversive learning.

2. Inhibition of PKA-Rap1 signaling in accumbal D2R-MSN attenuates the aversive response caused by optogenetic inactivation of mesolimbic DAergic neurons
 We applied an optogenetic technique to inhibit mesolimbic DAergic neurons. ArchT-mCherry was expressed in the VTA/SNc (Fig. 2A). To manipulate D2R- MSNs, we injected AAV-PKAdn or SPA1ca, and AAV-tetO-ArchT-mCherry into the NAc and VTA/SNc of Adora2a-Cre::DAT-PF-tTA double transgenic mice, respectively. Real-time place aversion test was carried out 3 weeks after the AAV injection (Fig. 2B and C). Optogenetic inhibition of the mesolimbic DAergic pathway reduced the time spent in a chamber with yellow light stimulation (p<0.05, Fig. 2C). These results indicate that inhibiting mesolimbic DAergic neuron causes aversive behavior. This aversive response was suppressed by PKAdn and SPA1ca expression in accumbal D2R-MSNs (p<0.05, Fig. 2C). These data clearly indicated that PKA-Rap1 signaling in accumbal D2R-MSNs controls aversive response.

【Discussion and Conclusion】
 In this study, we proposed a new perspective on the balance between activation of A2aR and inactivation of D2R in accumbal D2R-MSN using a combination of neurochemical, histochemical, AAV expression system, optogenetics, and behavioral techniques. In basal condition, adenosine tonically stimulates PKA-Rap1 through A2aR, but the activation of PKA-Rap1 is inhibited by D2R activation under basal DA concentration. The decrease of dopamine release and the subsequent inactivation of D2R in response to aversive stimuli activates PKA-Rap1 signaling due to disinhibition. Thus, the NAc may mediate aversive behavior through the A2aR-PKA-Rap1 signaling pathway following the reduction of DA release from mesolimbic DAergic neurons in the NAc after aversive stimuli.
 We demonstrated that electric foot shock-evoked phosphorylation of Rap1gap S563 was evident in D2R-MSNs of the NAc and that this phosphorylation was inhibited by A2aR antagonist KW6002. This suggests that A2aR in accumbal D2R-MSN is the upstream receptor involved in aversive responses. In fact, A2aR antagonist attenuated aversive memory and reduced PKA-Rap1 signaling caused by electric footshock in accumbal D2R-MSNs. These findings indicate that A2aR is a trigger that promotes PKA-Rap1 signaling after aversive stimuli. To investigate how PKA-Rap1 signaling contributes to aversive behavior, we used AAV-mediated cell-type specific PKA and Rap1 manipulation in accumbal D2R-MSNs. Inhibition of PKA-Rap1 signaling suppressed the step-through latency in passive avoidance tests, whereas the activation of PKA-Rap1 signaling potentiated the latency.
 According to the results of real-time place aversion, the inhibition of PKA- Rap1 signaling in accumbal D2R-MSNs can attenuate aversive response induced by photostimulation. These results suggested that A2aR-PKA-Rap1- MAPK signaling mainly plays a role in aversive response; thus, memory formation is impaired.
 We have recently proposed that the balance between DA and adenosine signals regulates the PKA-Rap1 pathway in D1R-MSNs and D2R-MSNs (Zhang et al. 2019). Basal DA concentration cannot activate D1R but activates D2R to suppress D2R-MSN activity. A high DA state (e.g., reward acquirement and abused drugs intake) activates D1R-MSN and inactivates D2R-MSN, whereas a low DA state (e.g., aversive experience) activates D2R-MSN due to the inability of D2R to suppress the A2aR-PKA-Rap1-MAPK pathway. The activation of accumbal D2R-MSNs regulates aversive response and memory formation. Our findings provide a novel negative reinforcement regulating mechanism managed by the activation of PKA-Rap1 in D2R-MSNs.

参考文献

Ader, R., Weijnen, J.A.W.M., Moleman, P., 1972. Retention of a passive avoidance response as a function of the intensity and duration of electric shock. Psychonomic Sci. 26, 125–128. https://doi.org/10.3758/BF03335453.

Asaoka, N., Nishitani, N., Kinoshita, H., Nagai, Y., Hatakama, H., Nagayasu, K., Shirakawa, H., Nakagawa, T., Kaneko, S., 2019. An adenosine A2A receptor antagonist improves multiple symptoms of repeated quinpirole-induced psychosis. eNeuro 6. https://doi.org/10.1523/ENEURO.0366-18.2019 e0366-18.2019.

Badrinarayan, A., Wescott, S.A., Weele, C.M.V., Saunders, B.T., Couturier, B.E., Maren, S., Aragona, B.J., 2012. Aversive stimuli differentially modulate real-time dopamine transmission dynamics within the nucleus accumbens core and shell.J. Neurosci. 32, 15779–15790. https://doi.org/10.1523/JNEUROSCI.3557-12.2012.

Berghe, N. Van D., Cool, R.H., Horn, G., Wittinghofer, A., 1997. Biochemical characterization of C3G: an exchange factor that discriminates between Rap1 and Rap2 and is not inhibited by Rap1A(S17N). Oncogene 15, 845–850. https://doi.org/ 10.1038/sj.onc.1201407.

Borsook, D., Becerra, L., Carlezon, W.A., Shaw, M., Renshaw, P., Elman, I., Levine, J., 2007. Reward-aversion circuitry in analgesia and pain: implications for psychiatric disorders. Eur. J. Pain 11, 7–20. https://doi.org/10.1016/j.ejpain.2005.12.005.

Bromberg-Martin, E.S., Matsumoto, M., Hikosaka, O., 2010. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834. https://doi.org/ 10.1016/J.Neuron.2010.11.022.

Cepeda, C., Buchwald, N.A., Levine, M.S., 1993. Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc. Natl. Acad. Sci. U.S.A. 90, 9576–9580. https://doi.org/10.1073/ pnas.90.20.9576.

Clegg, C.H., Correll, L.A., Cadd, G.G., McKnight, G.S., 1987. Inhibition of intracellular cAMP-dependent protein kinase using mutant genes of the regulatory type I subunit.J. Biol. Chem. 262, 13111–13119.

Cohen, J.Y., Haesler, S., Vong, L., Lowell, B.B., Uchida, N., 2012. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88. https://www.jbc.org/content/262/27/13111.full.pdf.

Correll, L.A., Woodford, T.A., Corbin, J.D., Mellon, P.L., McKnight, G.S., 1989.Functional characterization of cAMP-binding mutations in type I protein kinase.J. Biol. Chem. 264, 16672–16678. https://www.jbc.org/content/264/28/16672. full.pdf.

Danjo, T., Yoshimi, K., Funabiki, K., Yawata, S., Nakanishi, S., 2014. Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens. Proc. Natl. Acad. Sci.U.S.A. 111, 6455–6460. https://doi.org/10.1073/pnas.1404323111.

de Jong, J.W., Afjei, S.A., Pollak Dorocic, I., Peck, J.R., Liu, C., Kim, C.K., Tian, L., Deisseroth, K., Lammel, S., 2019. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron 101, 133–151. https://doi.org/ 10.1016/j.neuron.2018.11.005.

Drago, F., Leo, F.D., Giardina, L., 1999. Prenatal stress induces body weight deficit and behavioural alterations in rats: the effect of diazepam. Eur. Neuropsychopharmacol 9, 239–245. https://doi.org/10.1016/s0924-977x(98)00032-7.

Dunwiddie, T.V., Masino, S.A., 2001. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31–55. https://doi.org/10.1146/annurev. neuro.24.1.31.

Elman, I., Upadhyay, J., Langleben, D.D., Albanese, M., Becerra, L., Borsook, D., 2018.Reward and aversion processing in patients with post-traumatic stress disorder: functional neuroimaging with visual and thermal stimuli. Transl. Psychiatry 8. https://doi.org/10.1038/s41398-018-0292-6.

Ferguson, S.M., Eskenazi, D., Ishikawa, M., Wanat, M.J., Phillips, P.E.M., Dong, Y., Roth, B.L., Neumaier, J.F., 2011. Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat. Neurosci. 14, 22–24. https://doi.org/10.1038/nn.2703.

Fink, J.S., Weaver, D.R., Rivkees, S.A., Peterfreund, R.A., Pollack, A.E., Adler, E.M., Reppert, S.M., 1992. Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Mol. Brain Res. 14, 186–195. https://doi.org/10.1016/0169-328x(92)90173-9.

Franco, R., Navarro, G., 2018. Adenosine A2A receptor antagonists in neurodegenerative diseases: huge potential and huge challenges. Front. Psychiatr. 9, 1–5. https://doi. org/10.3389/fpsyt.2018.00068.

Funahashi, Y., Ariza, A., Emi, R., Xu, Y., Shan, W., Suzuki, K., Kozawa, S., Kozawa, S.,Ahammad, R.U., Wu, M., Takano, T., Yura, Y., Kuroda, K., Nagai, T., Amano, M., Yamada, K., Kaibuchi, K., 2019. Phosphorylation of Npas4 by MAPK regulates reward-related gene expression and behaviors. Cell Rep. 29, 3235–3252. https://doi. org/10.1016/j.celrep.2019.10.116.

Hamann, S.B., Ely, T.D., Grafton, S.T., Kilts, C.D., 1999. Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nat. Neurosci. 2, 289–293. https://doi.org/10.1038/6404.

Harris, C.R., Pashler, H., 2005. Enhanced memory for negatively emotionally charged pictures without selective rumination. Emotion 5, 191–199. https://doi.org/ 10.1037/1528-3542.5.2.191.

Hoscheidt, S.M., LaBar, K.S., Ryan, L., Jacobs, W.J., Nadel, L., 2014. Encoding negative events under stress: high subjective arousal is related to accurate emotional memory despite misinformation exposure. Neurobiol. Learn. Mem. 112, 237–247. https:// doi.org/10.1016/j.nlm.2013.09.008.

Hu, H., 2016. Reward and aversion. Annu. Rev. Neurosci. 39, 297–324. https://doi.org/ 10.1146/annurev-neuro-070815-014106.

Imai, T., Suzuki, M., SakanoH, 2006. Odorant receptor-derived cAMP signaling direct axonal targeting. Science 314, 657–661. https://doi.org/10.1126/science.1131794.

Jhou, T.C., Fields, H.L., Baxter, M.G., Saper, C.B., Holland, P.C., 2009. The rostromedial tegmental nucleus (RMTg), a major GABAergic afferent to midbrain dopamine neurons, selectively encodes aversive stimuli and promotes behavioral inhibition. Neuron 61, 786–800. https://doi.org/10.1016/j.neuron.2009.02.001.

Klawonn, A.M., Malenka, R.C., 2018. Nucleus accumbens modulation in reward and aversion. Cold Spring Harbor Symp. Quant. Biol. 83, 119–129. https://doi.org/ 10.1101/sqb.2018.83.037457.

Klawonn, A.M., Fritz, M., Nilsson, A., Bonaventura, J., Shionoya, K., Mirrasekhian, E., Karlsson, U., Jaarola, M., Granseth, B., Blomqvist, A., Michaelides, M., Engblom, D., 2018. Motivational valence is determined by striatal melanocortin 4 receptors.J. Clin. Invest. 128, 3160–3170. https://doi.org/10.1172/JCI97854.

Kravitz, A.V., Tye, L.D., Kreitzer, A.C., 2012. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15, 816–818. https://doi. org/10.1038/nn.3100.

Lobo, M.K., Zaman, S., Damez-Werno, D.M., Koo, J.W., Bagot, R.C., DiNieri, J.A., NugentA, Finkel, E., Chaudhury, D., Chandra, R., Riberio, E., Rabkin, J., Mouzon, E., Cachope, R., Cheer, J.F., Han, M.H., Dietz, D.M., Self, D.W., Hurd, Y.L., Vialou, V., Nestler, E.J., 2013. ΔFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli.J. Neurosci. 33, 18381–18395. https://doi.org/10.1523/JNEUROSCI.1875-13.2013. Maldve, R.E., Zhang, T.A., Ferrani-Kile, K., Schreiber, S.S., Lippmann, M.J., Snyder, G.L.,Fienberg, A.A., Leslie, S.W., Gonales, R.A., Morrisett, R.A., 2002. DARPP-32 and regulation of the ethanol sensitivity of NMDA receptors in the nucleus accumbens. Nat. Neurosci. 5, 641–648. https://doi.org/10.1038/nn877.

Matsumoto, M., Hikosaka, O., 2009. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841. https://doi.org/ 10.1038/nature08028.

McAvoy, T., Zhou, M.M., Greengard, P., Nairn, A.C., 2009. Phosphorylation of Rap1GAP, a striatally enriched protein, by protein kinase a controls Rap1 activity and dendritic spine morphology. Proc. Natl. Acad. Sci. U.S.A. 106, 3531–3536. https://doi.org/ 10.1073/pnas.0813263106.

McCutcheon, J.E., Ebner, S.R., Loriaux, A.L., Roitman, M.F., 2012. Encoding of aversion by dopamine and the nucleus accumbens. Front. Neurosci. 6, 1–10. https://doi.org/ 10.3389/fnins.2012.00137.

Meyer, F., Louilot, A., 2014. Consequences at adulthood of transient inactivation of the parahippocampal and prefrontal regions during early development: new insights from a disconnection animal model for schizophrenia. Front. Behav. Neurosci. 7, 1–18. https://doi.org/10.3389/fnbeh.2014.00118.

Mirenowicz, J., Schultz, W., 1996. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379, 449–451. https://doi.org/ 10.1038/379449a0.

Nagai, T., Nakamuta, S., Kuroda, K., Nakauchi, S., Nishioka, T., Takano, T., Zhang, X., Tsuboi, D., Funahashi, Y., Nakano, T., Yoshimoto, J., Kobayashi, K.,Uchigashima, M., Watanabe, M., Miura, M., Nishi, A., Kobayashi, K., Yamada, K., Amano, M., Kaibuchi, K., 2016a. Phosphoproteomics of the dopamine pathway enables discovery of Rap1 activation as a reward signal in vivo. Neuron 89, 550–565. https://doi.org/10.1016/j.neuron.2015.12.019.

Nagai, T., Yoshimoto, J., Kannon, T., Kuroda, K., Kaibuchi, K., 2016b. Phosphorylation signals in striatal medium spiny neurons. Trends Pharmacol. Sci. 37, 858–871. https://doi.org/10.1016/j.tips.2016.07.003.

Nagel, J., Hauber, W., 2002. Effects of salient environmental stimuli on extracellular adenosinelevels in the rat nucleus accumbens measured by in vivo microdialysis. Behav. Brain Res. 134, 485–492. https://doi.org/10.1016/S0166-4328(02)00062-1.

Nair, A.G., Gutierrez-Arenas, O., Eriksson, O., Vincent, P., Hellgren, K.J., 2015. Sensing positive versus negative reward signals through adenylyl cyclase-coupled GPCRs in direct and indirect pathway striatal medium spiny neurons. J. Neurosci. 35, 14017–14030. https://doi.org/10.1523/JNEUROSCI.0730-15.2015.

Nakanishi, S., Hikida, T., Yawata, S., 2014. Distinct dopaminergic control of the direct and indirect pathways in reward-based and avoidance learning behaviors.

Neuroscience 282, 49–59. https://doi.org/10.1016/j.neuroscience.2014.04.026.

O’Neill, C.E., Letendre, M.L., Bachtell, R.K., 2012. Adenosine A2A receptors in the nucleus accumbens bi-directionally alter cocaine seeking in rats.Neuropsychopharmacology 37, 1245–1256. https://doi.org/10.1038/ npp.2011.312.

O¨ gren, S.O., Stiedl, O., 2010. Passive avoidance. In: Stolerman, I.P. (Ed.), Encyclopedia of Psychopharmacology. Springer, Berlin, Heidelberg, pp. 1–10. https://doi.org/ 10.1007/978-3-540-68706-1_160.

Orellana, S.A., Mcknight, S.G., 1992. Mutations in the catalytic subunit of cAMP- dependent protein kinase result in unregulated biological activity. Proc. Natl. Acad. Sci. U.S.A. 89, 4726–4730. https://doi.org/10.1073/pnas.89.10.4726.

Pan, B.X., Vautier, F., Ito, W., Bolshakov, V.Y., Morozov, A., 2008. Enhanced cortico- amygdala efficacy and suppressed fear in absence of Rap1. J. Neurosci. 28, 2089–2098. https://doi.org/10.1523/JNEUROSCI.5156-07.2008.

Reedquist, K.A., Ross, E., Koop, E.A., Wolthuis, R.M.F., Zwartkruis, F.J.T., Kooyk, Y.V., Salmon, M., Buckley, C.D., Bos, J.L., 2000. The small GTPase, Rap1, mediates CD31- induced integrin adhesion. J. Cell Biol. 148, 1151–1158. https://doi.org/10.1083/ jcb.148.6.1151.

Reinstein, J., Schlichting, I., Frech, M., Goody, R.S., Wittinghofer, A., 1991. p21 with a phenylalanine 28 to leucine mutation reacts normally with the GTPase activating protein GAP but nevertheless has transforming properties. J. Biol. Chem. 266, 17700–17706.

Saifullah, M.A., Bin, Nagai, T., Kuroda, K., Wulaer, B., Nabeshima, T., Kaibuchi, K., Yamada, K., 2018. Cell type-specific activation of mitogen-activated protein kinase in D1 receptor-expressing neurons of the nucleus accumbens potentiates stimulus- reward learning in mice. Sci. Rep. 8, 1–12. https://doi.org/10.1038/s41598-018- 32840-1.

S'anchez-Catala´n, M., Faivre, F., Yalcin, I., Muller, M., Massotte, D., Majchrzak, M., Barrot, M., 2017. Response of the tail of the ventral tegmental area to aversive stimuli. Neuropsychopharmacology 42, 638–648. https://doi.org/10.1038/ npp.2016.139.

Scofield, M.D., Heinsbroek, J.A., Gipson, C.D., Kupchik, Y.M., Spencer, S., Smith, A.C., Roberts-Wolfe, D., Kalivas, P.W., 2016. The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis.Pharmacol. Rev. 68, 816–871. https://doi.org/10.1124/pr.116.012484.

Scott, D.B., Blanpied, T.A., Swanson, G.T., Zhang, C., Ehlers, M.D., 2001. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing.J. Neurosci. 21, 3063–3072. https://doi.org/10.1523/JNEUROSCI.21-09-03063.2001.

Shalin, S.C., Zirrgiebel, U., Honsa, K.J., Julien, J., Miller, F.D., Kaplan, D.R., Sweatt, J.D., 2004. Neuronal MEK is important for normal fear conditioning in mice. J. Neurosci. Res. 75, 760–770. https://doi.org/10.1002/jnr.20052.

Smith, R.J., Lobo, M.K., Spencer, S., Kalivas, P.W., 2013. Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr. Opin. Neurobiol. 23, 546–552. https://doi. org/10.1016/j.conb.2013.01.026.

Sooksawate, T., Isa, K., Matsui, R., Kato, S., Kinoshita, M., Kobayashi, K., Watanabe, D., Kobayashi, K., Isa, T., 2013. Viral vector-mediated selective and reversible blockade of the pathway for visual orienting in mice. Front. Neural Circ. 7, 1–11. https://doi. org/10.3389/fncir.2013.00162.

Stockwell, J., Jakova, E., Cayabyab, F.S., 2017. Adenosine A1 and A2A receptors in the brain: current research and their role in neurodegeneration. Molecules 22, 1–18. https://doi.org/10.3390/molecules22040676.

Stornetta, R.L., Zhu, J.J., 2011. Ras and Rap signaling in synaptic plasticity and mental disorders. Neuroscientist 17, 54–78. https://doi.org/10.1177/1073858410365562. Surmeier, D.J., Bargas, J., Hemmings, H.C., Nairn, A.C., Greengard, P., 1995. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14, 385–397. https://doi.org/10.1016/0896-6273(95)90294-5.

Surmeier, D.J., Ding, J., Day, M., Wang, Z., Shen, W., 2007. D1 and D2 dopamine- receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235. https://doi.org/10.1016/j. tins.2007.03.008.

Svenningsson, P., Le, Moine C., Fisone, G., Fredholm, B.B., 1999. Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog. Neurobiol. 59, 355–396. https://doi.org/10.1016/S0301-0082(99)00011-8.

Ungless, M.A., Magill, P.J., Bolam, J.P., 2004. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303, 2040–2042. https:// doi.org/10.1126/science.1093360.

Waltereit, R., Weller, M., 2003. Signaling from cAMP/PKA to MAPK and synaptic plasticity. Mol. Neurobiol. 27, 99–106. https://doi.org/10.1385/MN:27:1:99.

Yamada, K., Tanaka, T., Han, D., Senzaki, K., Kameyama, T., Nabeshima, T., 1999. Protective effects of idebenone and α-tocopherol on β-amyloid-(1-42)-induced learning and memory deficits in rats: implication of oxidative stress in β-amyloid- induced neurotoxicity in vivo. Eur. J. Neurosci. 11, 83–90. https://doi.org/10.1046/ j.1460-9568.1999.00408.x.

Yamaguchi, T., Goto, A., Nakahara, I., Yawata, S., Hikida, T., Matsuda, M., Funabiki, K., Nakanishi, S., 2015. Role of PKA signaling in D2 receptor-expressing neurons in the core of the nucleus accumbens in aversive learning. Proc. Natl. Acad. Sci. U.S.A. 112, 11383–11388. https://doi.org/10.1073/pnas.1514731112.

Yang, H., de Jong, J.W., Tak, Y., Peck, J., Bateup, H.S., Lammel, S., 2018. Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations. Neuron 97, 434–449. https://doi. org/10.1016/j.neuron.2017.12.022.

Zhang, X., Nagai, T., Uddin, R., Kuroda, K., Nakamuta, S., Nakano, T., Yukinawa, N., Funahashi, Y., Yamahashi, Y., Amano, M., Yoshimoto, J., Yamada, K., Kaibuchi, K., 2019. Balance between dopamine and adenosine signals regulates the PKA/Rap1 pathway in striatal medium spiny neurons. Neurochem. Int. 122, 8–18. https://doi. org/10.1016/j.neuint.2018.10.008.

Zhu, Y., Wienecke, C.F.R., Nachtrab, G., Chen, X., 2016. A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 530, 219–222. https://doi.org/ 10.1038/nature16954.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る