リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pathogenic mutation of TDP-43 impairs RNA processing in a cell type-specific manner : implications for the pathogenesis of ALS/FTLD (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pathogenic mutation of TDP-43 impairs RNA processing in a cell type-specific manner : implications for the pathogenesis of ALS/FTLD (本文)

今泉, 研人 慶應義塾大学

2022.08.29

概要

Transactivating response element DNA-binding protein of 43 kDa (TDP-43), which is encoded by the TARDBP gene, is an RNA-binding protein with fundamental RNA processing activities, and its loss-of-function (LOF) has a central role in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degener- ation (FTLD). TARDBP mutations are postulated to inactivate TDP-43 functions, leading to impaired RNA proc- essing. However, it has not been fully examined how mutant TDP-43 affects global RNA regulation, especially in human cell models. Here, we examined global RNA processing in forebrain cortical neurons derived from human induced pluripotent stem cells (iPSCs) with a pathogenic TARDBP mutation encoding the TDP-43K263E protein. In neurons expressing mutant TDP-43, we detected disrupted RNA regulation, including global changes in gene ex- pression, missplicing, and aberrant polyadenylation, all of which were highly similar to those induced by TDP-43 knock-down. This mutation-induced TDP-43 LOF was not because of the cytoplasmic mislocalization of TDP-43. Intriguingly, in nonneuronal cells, including iPSCs and neural progenitor cells (NPCs), we did not observe impair- ments in RNA processing, thus indicating that the K263E mutation results in neuron-specific LOF of TDP-43. This study characterizes global RNA processing impairments induced by mutant TDP-43 and reveals the unprece- dented cell type specificity of TDP-43 LOF in ALS/FTLD pathogenesis.

Key words: amyotrophic lateral sclerosis; frontotemporal lobar degeneration; induced pluripotent stem cell; TDP-43

この論文で使われている画像

参考文献

Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22:2008–2017.

Ayala YM, De Conti L, Avendaño-Vázquez SE, Dhir A, Romano M,D’Ambrogio A, Tollervey J, Ule J, Baralle M, Buratti E, Baralle FE(2011) TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J 30:277–288.

Brown AL, et al. (2022) TDP-43 loss and ALS-risk SNPs drive missplicing and depletion of UNC13A. Nature 603:131–137.

Chen HJ, Topp SD, Hui HS, Zacco E, Katarya M, McLoughlin C, King A, Smith BN, Troakes C, Pastore A, Shaw CE (2019) RRM adjacent TARDBP mutations disrupt RNA binding and enhance TDP-43 proteinopathy. Brain 142:3753–3770.

Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890.

Cotto KC, Feng Y-Y, Ramu A, Skidmore ZL, Kunisaki J, Richters M,Freshour S, Lin Y, Chapman WC, Uppaluri R, Govindan R, Griffith OL, Griffith M (2021) RegTools: integrated analysis of genomic and transcriptomic data for the discovery of splicing variants in cancer. bioRxiv 436634.

Eréndira Avendaño-Vázquez S, Dhir A, Bembich S, Buratti E, Proudfoot N, Baralle FE (2012) Autoregulation of TDP-43 mRNA May/June 2022, 9(3) ENEURO.0061-22.2022 levels involves interplay between transcription, splicing, and alternative polyA site selection. Genes Dev 26:1679–1684.

Goering R, Engel KL, Gillen AE, Fong N, Bentley DL, Taliaferro JM(2021) LABRAT reveals association of alternative polyadenylation with transcript localization, RNA binding protein expression, transcription speed, and cancer survival. BMC Genomics 22:476.

Ha KCH, Blencowe BJ, Morris Q (2018) QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data. Genome Biol 19:45.

Hallegger M, Chakrabarti AM, Lee FCY, Lee BL, Amalietti AG, Odeh HM, Copley KE, Rubien JD, Portz B, Kuret K, Huppertz I, Rau F, Patani R, Fawzi NL, Shorter J, Luscombe NM, Ule J (2021) TDP-43 condensation properties specify its RNA-binding and regulatory repertoire. Cell 184:4680–4696.e22.

Imaizumi K, Okano H (2021) Modeling neurodevelopment in a dish with pluripotent stem cells. Dev Growth Differ 63:18–25.

Imaizumi K, Sone T, Ibata K, Fujimori K, Yuzaki M, Akamatsu W,

Okano H (2015) Controlling the regional identity of hPSC-derived neurons to uncover neuronal subtype specificity of neurological disease phenotypes. Stem Cell Reports 5:1010–1022.

Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard JP, Lacomblez L, Pochigaeva K, Salachas F, Pradat PF, Camu W, Meininger V, Dupre N, Rouleau GA (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574.

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graphbased genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915.

Kim G, Gautier O, Tassoni-Tsuchida E, Ma XR, Gitler AD (2020) ALS genetics: gains, losses, and implications for future therapies.Neuron 108:822–842.

Klim JR, Williams LA, Limone F, Guerra San Juan I, Davis-Dusenbery BN, Mordes DA, Burberry A, Steinbaugh MJ, Gamage KK, Kirchner R, Moccia R, Cassel SH, Chen K, Wainger BJ, Woolf CJ,Eggan K (2019) ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci 22:167–179.

Kovacs GG, Murrell JR, Horvath S, Haraszti L, Majtenyi K, Molnar MJ, Budka H, Ghetti B, Spina S (2009) TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov Disord 24:1842–1847.

Li YI, Knowles DA, Humphrey J, Barbeira AN, Dickinson SP, Im HK,Pritchard JK (2018) Annotation-free quantification of RNA splicing using LeafCutter. Nat Genet 50:151–158.

Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930.

Ling JP, Pletnikova O, Troncoso JC, Wong PC (2015) TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD.Science 349:650–655.

Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis.Neuron 79:416–438.

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550–521.

Ma XR, Zheng XL, Zheng CY, Hu YT, Qin H, Chen JH, Xu QF, Liang CF (2022) TDP-43 represses cryptic exon inclusion in the FTD–ALS gene UNC13A. Nature 603:124–130.

Mackenzie IR, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995–1007.

Melamed Z, López-Erauskin J, Baughn MW, Zhang O, Drenner K, Sun Y, Freyermuth F, McMahon MA, Beccari MS, Artates JW,Ohkubo T, Rodriguez M, Lin N, Wu D, Bennett CF, Rigo F, Da Cruz S, Ravits J, Lagier-Tourenne C, Cleveland DW (2019) Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP43-dependent neurodegeneration. Nat Neurosci 22:180–190.

Modic M, Grosch M, Rot G, Schirge S, Lepko T, Yamazaki T, Lee FCY, Rusha E, Shaposhnikov D, Palo M, Merl-Pham J,Research Article: New Research Cacchiarelli D, Rogelj B, Hauck SM, von Mering C, Meissner A,Lickert H, Hirose T, Ule J, Drukker M (2019) Cross-regulation between TDP-43 and paraspeckles promotes pluripotency-differentiation transition. Mol Cell 74:951–965.e13.

Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC,Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W,Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133.

Okano H, Yamanaka S (2014) iPS cell technologies: significance and applications to CNS regeneration and disease. Mol Brain 7:22.

Okano H, Morimoto S (2022) iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell 29:189–208.

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419.

Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J,Liang TY, Ling SC, Sun E, Wancewicz E, Mazur C, Kordasiewicz H, Sedaghat Y, Donohue JP, Shiue L, Bennett CF, Yeo GW,Cleveland DW (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43.Nat Neurosci 14:459–468.

Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK (2019)Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci 12:25.

Prudencio M, et al. (2020) Truncated stathmin-2 is a marker of TDP43 pathology in frontotemporal dementia. J Clin Invest 130:6080–6092.

Rot G, Wang Z, Huppertz I, Modic M, Lenc Haberman N, Curk T, von Mering C, Ule J (2017) High-resolution RNA maps suggest common principles of splicing and polyadenylation regulation by TDP-43. Cell Rep 19:1056–1067.

Sato T, Imaizumi K, Watanabe H, Ishikawa M, Okano H (2021) Generation of region-specific and high-purity neurons from human feeder-free iPSCs. Neurosci Lett 746:135676.

Sephton CF, Good SK, Atkin S, Dewey CM, Mayer P, Herz J, Yu G (2010) TDP-43 is a developmentally regulated protein essential for early embryonic development. J Biol Chem 285:6826–6834.

Shiga A, Ishihara T, Miyashita A, Kuwabara M, Kato T, Watanabe N,Yamahira A, Kondo C, Yokoseki A, Takahashi M, Kuwano R,Kakita A, Nishizawa M, Takahashi H, Onodera O (2012) Alteration of POLDIP3 splicing associated with loss of function of TDP-43 in tissues affected with ALS. PLoS One 7:e43120.

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K,Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872.

Victor MB, Richner M, Olsen HE, Lee SW, Monteys AM, Ma C, Huh CJ, Zhang B, Davidson BL, Yang XW, Yoo AS (2018) Striatal neurons directly converted from Huntington’s disease patient fibroblasts recapitulate age-associated disease phenotypes.Nat Neurosci 21:341–352.

Weskamp K, Barmada SJ (2018) TDP43 and RNA instability in amyotrophic lateral sclerosis. Brain Res 1693:67–74.

Yu H, Lu S, Gasior K, Singh D, Vazquez-Sanchez S, Tapia O, TopraniD, Beccari MS, Yates JR, Da Cruz S, Newby JM, Lafarga M,Gladfelter AS, Villa E, Cleveland DW (2021) HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science 371:eabb4309.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る