リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Safe, Simple, and Facile Staining Method Using Polysiloxanes for High-Contrast Visualization of Gelator Aggregates by Transmission Electron Microscopy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Safe, Simple, and Facile Staining Method Using Polysiloxanes for High-Contrast Visualization of Gelator Aggregates by Transmission Electron Microscopy

Hanabusa, Kenji Nakashima, Masashi Funatsu, Eriko Kishi, Sachiyo Suzuki, Masahiro 信州大学 DOI:10.1246/bcsj.20180072

2020.03.12

概要

The staining of TEM samples using Si atoms was investigated using aggregates of loose gels formed by twelve structurally different gelators in several solvents. Thirteen commercially available siloxanes were used as stains. TEM images of non-stained and OsO4-stained samples of molecular aggregates formed by the dodecamethylenediamide of N-methacryloyl-oxyethylaminocarbonyl-L-isoleucine in 1-propanol were poorly defined and low-contrast. However, the image of a methacryloyloxypropyl-terminated polydimethylsiloxane (S1)-stained sample was characterized by very clear bundles of fine fibers. The staining effect was explained by the wrapping of fibers, the stabilizing of the individual fibers, and reinforcing by S1. An S1 concentration of more than 5 mgmL(-1) was found to be necessary for satisfactory contrast. S1 was successfully applied to the observation of aggregates of eleven other gelators. S1 worked universally as an aggregate stain regardless of the gelator or solvent polarity. The staining effect was observed for other siloxanes. This effect was found to depend on the molecular weight of the siloxane (>1,000) rather than the kind of siloxane employed. Energy-dispersive X-ray spectroscopy indicated that the molecules of S1 gather on the surface of the fibers during drying, wrapping them. The results indicate that the present staining method guarantees reproducibility and universality.

この論文で使われている画像

参考文献

M. A. Hayat, Principles and Techniques of Electron

Microscopy, Biological Applications Vol. 1, Litton

Educational Publishing, 1970.

M. A. Hayat, Electron Microscopy of Enzymes, Principles

and Methods Vol. 1, Litton Educational Publishing, 1973.

M. A. Hayat, Basic Techniques for Transmission Electron

Microscopy, Academic, Florida, 1986.

D. B. Williams, C. B. Carter, Transmission Electron

Microscopy, A Textbook for Materials Science, Springer,

2009.

C. B. Carter, D. B. Williams, Transmission Electron

Microscopy, Diffraction, Imaging, and Spectrometry,

Springer, Switzerland, 2016.

J. M. Zuo, J. C. H. Spence, Advanced Transmission

Electron Microscopy, Imaging, Diffraction in Nanoscience,

Springer, New York, 2017.

T. Kunitake, Y. Okahata, J. Am. Chem. Soc. 1977, 99,

3860–3861.

T. Kunitake, Y. Okahata, J. Am. Chem. Soc. 1979, 101,

5231–5234.

Y. Okahata, S. Tanamachi, M. Nagai, T. Kunitake, J.

Colloid Interface Sci. 1981, 82, 401–417.

10 A. Kumano, T. Kajiyama, M. Takayanagi, T. Kunitake, Y.

Okahata, Bull. Chem. Soc. Jpn. 1985, 58, 1205–1209.

11 J. J. Jones, R. P. Burford, Polym. International 1991, 26,

163–170.

12 G. T. Oostergetel, F. J. Esselink, G. Hadzzioannou,

Langmuir 1995, 11, 3721–3724.

13 S. Setz, F. Stricker, J. Kressler, T. Duschek, R. Mülhaupt,

J. Appl. Polym. Sci. 1996, 59, 1117–1129.

14 J. S. Fodor, R. M. Briber, T. P. Russell, K. R. Carter, J. L.

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Hedrick, R. D. Miller, J. Polym. Sci. B, Polym. Phys. 1997,

35, 1067–1076.

D. J. Pochan, S. P. Gido, J. Zhou, J. W. Mays, M. Whitmore,

J. Polym. Sci. B, Polym. Phys. 1997, 35, 2629–2643.

K. Oksman, H. Lindberg, A. Holmgren, J. Appl. Polym.

Sci. 1998, 69, 201–209.

S. Hong, A. A. Bushelman, W. J. MacKnight, S. P. Gido,

D. J. Lohse L. J. Fetters, Polymer 2001, 42, 5909–5914.

A. Adedeji, S. Lyu, C. W. Macosko, Macromolecules 2001,

34, 8663–8668.

A. Vazquez, M. López, E. Serrano, A. Valea, N. E.

Zafeiropoulos, I. Mondragon, J. Appl. Polym. Sci. 2008,

110, 3624–3637.

H. L. Frisch, Y. Xue, Polym. J. 1994, 26, 828–832.

R. Godehardt, S. Rudolph, W. Lebek, S. Goerlitz, R.

Adhikari, E. Allert, J. Giesemann, G. H. Michler, J.

Macromol. Sci. Phys. 1999, B38, 817–835.

F. Cser, F. Rasoul, E. Kosior, Polym. Eng. Sci. 1999, 39,

1100–108.

M. F. Ottaviani, P. Matteini, M. Brustolon, N. J. Turro, S.

Jockusch, D. A. Tomalia, J. Phys. Chem. B 1998, 102,

6029–6039.

M. F. Ottaviani, P. Favuzza, M. Bigazzi, N. J. Turro, S.

Jockusch, D. A. Tomalia, Langmuir 2000, 16, 7368–7372.

S.-E. Stiriba, M. Q. Slagt, H. Kautz, R. J. M. K. Gebbink,

R. Thomann, H. Frey, G. Koten, Chem. Eur. J. 2004, 10,

1267–1237.

M. R. Moghbeli, N. Mohammadi, R. Bagheri, S. R.

Ghaffarian, Polymer 2003, 44, 4011–4019.

D. I. Lee, J. Polym. Sci. A, Polym. Chem. 2006, 44, 2826–

2836.

N. Pukkate, T. Kitai, Y. Yamamoto, T. Kawazura, J.

Sakdapipanich, S. Kawahara, Eur. Polym. J. 2007, 43,

3208–3214.

S.-X. Li, W.-F. Wang, L.-M. Liu, G.-Y. Liu, Polym. Bull.

2008, 61, 749–757.

Y. Mogi, M. Nomura, H. Kotsuji, K. Ohnishi, Y.

Matsushita, I. Noda, Macromolecules 1994, 27, 6755–

6760.

W. P. Chen, M. F. Zhu, S. Song, B. Sun, Y. M. Chen, H. J.

P. Adler, Macromol. Mater. Eng. 2005, 290, 669–674.

G. G. Ferrer, M. S. Sanchez, J. L. G. Ribelles, F. J. R.

Colomer, M. M. Pradas, Euro. Polym. J. 2007, 43, 3136–

3145.

D. P. Harland, J. A. Vernon R. J. Walls, J. L. Woods, J.

Microsc. 2011, 243, 184–196.

M. Huo, M. Zeng, D. Li, L. Lei, Y. Wei, J. Yuan,

Macromolecules 2017, 50, 8212–8220.

H. Stara, M. Slouf, F. Lednicky, E. Pavlova, J. Baldrian, Z.

Stary, J. Macromol. Sci. B Phys. 2008, 47, 1148–1160.

S. Mann, R. J. P. Williams, J. Chem. Soc. Chem.

Commun.1981, 1083–1084.

P. Terech, R. G. Weiss, Chem. Rev. 1997, 97, 3133–3159.

J. H. Esch, B. L. Feringa, Angew. Chem., Int. Ed. 2000, 39,

2263–2266.

L. A. Estroff, A. D. Hamilton, Chem. Rev. 2004, 104,

1201–1217.

P. Dastidar, Chem. Soc. Rev. 2008, 37, 2699–2715.

S. Banerjee, R. K. Das, U. Maitra, J. Mater. Chem. 2009,

19, 6649–6687.

P. Terech, R. G. Weiss, Molecular gels, materials with selfassembled fibrillar networks, Springer, Dordrecht, 2006.

F. Fages, Low molecular mass gelators: design, selfassembly, function, Springer, Berlin, 2005.

M. Suzuki, K. Hanabusa, Chem. Soc. Rev. 2009, 38, 967.

M. Suzuki, K. Hanabusa, Chem. Soc. Rev. 2010, 39, 455.

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

J.-L. Li, X.-Y. Liu, Adv. Funct. Mater. 2010, 20, 3196–

3216.

G. John, B. V. Shankar, S. R. Jadhav, P. K. Vemula,

Langmuir 2010, 26, 17843–17851.

H. Svobodová, V. Noponen, E. Kolehmainen, E. Sievänen,

RSC Adv. 2012, 2, 4985–5007.

S. S. Babu, S. Prasanthkumar, A. Ajayaghosh, Angew.

Chem., Int. Ed. 2012, 51, 1766–1776.

A. Y.-Y. Tam, V. W.-W. Yam, Chem. Soc. Rev. 2013, 42,

1540–1567.

J. Raeburn, A. Z. Cardoso, D. J. Adams, Chem. Soc. Rev.

2013, 42, 5143–5156.

G. Yu, X. Yan, C. Han, F. Huang, Chem. Soc. Rev. 2013,

42, 6697–6722.

M. D, Segarra-Maset, V. J. Nebot, J. F. Miravet, B. Escuder,

Chem. Soc. Rev. 2013, 42, 7086–7098.

S. S. Babu, V. K. Praveen, A. Ajayaghosh, Chem. Rev.

2014, 114, 1973–2129.

D. K. Kumar, J. W. Steed, Chem. Soc. Rev. 2014, 43, 2080–

2088.

V. K. Praveen, C. Ranjith, N. Armaroli, Angew. Chem., Int.

Ed. 2014, 53, 365–368.

Y. Lan, M. G. Corradini, R. G. Weiss, S. R. Raghavanc, M.

A. Rogers, Chem. Soc. Rev. 2015, 44, 6035–6058.

T. Tachibana, H. Kambara, Bull. Chem. Soc. Jpn. 1969, 42,

3422–3424.

P. Terech, R. H. Wade, J. Colloid Interface Sci. 1987, 125,

542–551.

K. Hanabusa, T. Miki, Y. Taguchi, T. Koyama, H. Shirai, J.

Chem. Soc. Chem. Commun. 1993, 1382–1384.

K. Hanabusa, M. Yamada, M. Kimura, H. Shirai, Angew.

Chem., Int. Ed. 1996, 35, 1949–1951.

K. Hanabusa, K. Hiratsuka, M. Kimura, H. Shirai, Chem.

Mater. 1999, 11, 649–655.

Y. Yang, M. Suzuki, S. Owa, H. Shirai, K. Hanabusa, J.

Am. Chem. Soc. 2007, 129, 581–597.

K. Hanabusa, T. Ueda, S. Takata, M. Suzuki, Chem. Euro,

J. 2016, 22, 16937–16949.

H. Nakagawa, M. Fujiki, T. Sato, M. Suzuki, K. Hanabusa,

Bull. Chem. Soc. Jpn. 2017, 90, 312–321.

Y. Imasaka, M. Sano, H. Shirai, K. Hanabusa, Polym. J. in

press.

M. Suzuki, R. Yanagida, C. Setoguchi, H. Shirai, K.

Hanabusa, J. Polym. Sci., Part A: Polym. Chem. 2008, 46,

353–361.

H. Hoshizawa, Y. Minemura, K. Yoshikawa, M. Suzuki,

K. Hanabusa, Langmuir 2013, 29, 14666–14673.

M. Suzuki, H. Saito, K. Hanabusa, Langmuir 2009, 25,

8579–8585.

...

参考文献をもっと見る