リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Origin of scarlet gynogenetic triploid Carassius fish: Implications for conservation of the sexual–gynogenetic complex」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Origin of scarlet gynogenetic triploid Carassius fish: Implications for conservation of the sexual–gynogenetic complex

Mishina, Tappei Nomoto, Kazuhiro Machida, Yoshiyasu Hariu, Tsutomu Watanabe, Katsutoshi 京都大学 DOI:10.1371/journal.pone.0276390

2022.10.20

概要

Conservation of sperm-dependent asexual (gynogenetic) species is challenging due to their complicated ecological dynamics, which requires the stable coexistence with their sperm-providing sexual relatives, who often share similar niches. A symbolic but vulnerable gynogenetic animal is the scarlet Carassius fish, or Hibuna, which is mainly found in Lake Harutori on Hokkaido, Japan. Although Hibuna in Lake Harutori has been protected as a symbol of the Natural Monument of Japan, it has recently suffered population decline. To establish an effective conservation strategy for Hibuna, we investigated its origin, reproductive mode, and genetic diversity, with reference to the surrounding wild populations, using nuclear microsatellites and mitochondrial gene sequences. Our genetic analyses revealed that the main ploidy of Hibuna was triploid or tetraploid, and it reproduces gynogenetically. However, no co-existing sexual diploid Carassius was detected among our samples, suggesting that the sexual diploids and the gynogenetic population including Hibuna would be at risk of co-extirpation. In addition, Hibuna showed high genetic/clonal diversity and most Hibuna had nonindigenous mitochondrial haplotypes that are mostly identical to those reported from goldfish. These results indicate that Hibuna most probably originated from hybridization between indigenous gynogenetic triploids and goldfish introduced about 100 years ago, involving rare sexual reproduction. This spontaneous long-term field experiment exemplifies the recently documented diversification process of gynogenetic Carassius via complex interploidy gene flow. Although the priority to be placed on the conservation of Hibuna is controversial, the maintenance of gynogenetic Carassius, including Hibuna, requires strategic conservation of sexual populations.

この論文で使われている画像

参考文献

1. Laenen B, Tedder A, Nowak MD, Tora¨ ng P, Wunder J, Wo¨ tzel S, et al. Demography and mating system shape the genome-wide impact of purifying selection in Arabis alpina. Proc Natl Acad Sci U S A. 2018; 115: 816–821.

2. Arnaud-Haond S, Stoeckel S, Bailleul D. New insights into the population genetics of partially clonal organisms: When seagrass data meet theoretical expectations. Mol Ecol. 2020; 29: 3248–3260. https://doi.org/10.1111/mec.15532 PMID: 32613610

3. Beukeboom LW, Beukeboom LW, Vrijenhoek RC, Vrijenhoek RC. Evolutionary genetics and ecology of sperm dependent parthenogenesis. J Evol Biol. 1998; 11: 755–782.

4. Lehtonen J, Schmidt DJ, Heubel K, Kokko H. Evolutionary and ecological implications of sexual parasit- ism. Trends Ecol Evol. 2013; 28: 297–306. https://doi.org/10.1016/j.tree.2012.12.006 PMID: 23399316

5. Schlupp I. The evolutionary ecology of gynogenesis. Annu Rev Ecol Evol Syst. 2005; 36: 399–417.

6. Maynard Smith J. The Evolution of Sex. Cambridge: Cambridge University Press; 1978.

7. Muller HJ. The relation of recombination to mutational advance. Mutat Res Mol Mech Mutagen. 1964; 1: 2–9. https://doi.org/10.1016/0027-5107(64)90047-8 PMID: 14195748

8. Avise JC. Clonality. New York: Oxford University Press; 2008.

9. Bogart JP, Bi K, Fu J, Noble DWA, Niedzwiecki J. Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes. Genome. 2007; 50: 119–136.

10. Denton RD, Morales A, Gibbs HL. Genome-specific histories of divergence and introgression between an allopolyploid unisexual salamander lineage and two ancestral sexual species. Evolution. 2018; 72: 1689–1700. https://doi.org/10.1111/evo.13528 PMID: 29926914

11. Mishina T, Takeshima H, Takada M, Iguchi K. Interploidy gene flow involving the sexual–asexual cycle facilitates the diversification of gynogenetic triploid Carassius fish. Sci Rep. 2021; 1–12.

12. Hosoya K. Cyprinidae. In: Nakabo T, editor. Fishes of Japan with Pictorial Keys to the Species, English ed. 3rd ed. Hadano: Tokai University Press; 2013. pp. 308–309, 1813–1814.

13. Eschmeyer WN, Fricke R, van der Laan R. Catalog of Fishes: Genera, Species, References. 2017. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp

14. Kalous L, Bohlen J, Rylkova´ K, Petrty´ M. Hidden diversity within the prussian carp and designation of a neotype for Carassius gibelio (Teleostei: Cyprinidae). Ichthyol Explor Freshwaters. 2012; 23: 11–18.

15. Fujioka Y. Present status and conservation of the endangered endemic Lake Biwa cyprinids, Honmor- oko (Gnathopogon caerulescens), Nigorobuna (Carassius auratus grandoculis), and Gengorobuna (Carassius cuvieri). Jpn J Ichthyol. 2013; 60: 57–63.

16. Takada M. Carassius. In: Tachihara K., editor. Threatened Wildlife in Okinawa, 3rd ed. (Animals). Naha: Nature Conservation Division Department of Environmental Affairs Okinawa Prefectural Govern- ment; 2017.

17. Kobayashi H, Kawashima J, Takeuchi N. Comparative chromosome studies in the genus Carassius expecially with a finding of polyploidy in the ginbuna (C. auratus langsdorfi). Jpn J Ichthyol. 1970; 17: 153–160.

18. Shimizu Y, Oshiro T, Sakaizumi M. Electrophoretic studies of diploid, triploid, and tetraploid forms of the Japanese silver crucian carp, Carassius auratus langsdorfii. Jpn J Ichthyol. 1993; 40: 65–75.

19. Hokkaido Government. Threatened Wildlife of Hokkaido “Red Data Book of Hokkaido”. Sapporo: Hok- kaido Government Press; 2001.

20. Ojima Y. The Origin of Natural Monument, scarlet crucian carp (Hibuna) in the Harutori Lake, Kushiro, Hokkaido, Japan. Proc Jpn Acad Ser B. 1987; 63: 365–368.

21. Hariu T, editor. Emergent survey reports on the Lake Harutori, the Natural Monument of Japan as a habitat for the Hibuna. Kushiro: Kushiro City Museum; 2011.

22. Sato N. Memories of Hibuna (in Japanese). In: Lake Harutori survey team, editor. Lake Harutori. Kush- iro: Kushiro Sousho; 1974. pp. 207–211.

23. Kobayashi T. Genetic investigation on Hibuna and Ginbuna in Lake Harutori (in Japanese). In: Sawa S, editor. Interim report on the conservation measures survey of Lake Harutori, the Natural Monument of Japan as a habitat for the Hibuna. Kushiro: Kushiro City Museum; 1986. pp. 46–55.

24. Dong J, Murakami M, Fujimoto T, Yamaha E, Arai K. Genetic characterization of the progeny of a pair of the tetraploid silver crucian carp Carassius auratus langsdorfii. Fish Sci. 2013; 79: 935–941.

25. Mada Y, Miyagawa M, Hayashi T, Umino T, Arai K. Production of tetraploids by introduction of sperm nucleus into the eggs of gynogenetic triploid ginbuna Carasius langsdorfii. Aquac Sci. 2001; 49: 103– 112.

26. Science Council of Japan. Guidelines for proper conduct of animal experiments. 2006. http://www.scj. go.jp/ja/info/kohyo/pdf/kohyo-20-k16-2e.pdf

27. du Sert NP, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020; 18: 1–12.

28. Millien-Parra V, Jaeger JJ. Island biogeography of the Japanese terrestrial mammal assemblages: An example of a relict fauna. J Biogeogr. 1999; 26: 959–972.

29. Goto A. Fishes in rivers and lakes: origin and adaptive strategy (in Japanese). In: Ishigaki K, Fukuda M, editors. Formation History of Nature of Hokkaido. Sapporo: Hokkaido University Press; 1994. pp. 150– 166.

30. Watanabe K, Takahashi H, Kitamura A, Yokoyama R, Kitagawa T, Takeshima H, et al. Biogeographical history of Japanese freshwater fishes: Phylogeographic approaches and perspectives. Jpn J Ichthyol. 2006; 53: 1–38.

31. Lambeck K, Chappell J. Sea level change through the last glacial cycle. Science. 2001; 292: 679–686. https://doi.org/10.1126/science.1059549 PMID: 11326090

32. Suzaki T, Minoura K. Stratigraphy and paleogeographic reconstruction of the Upper Cenozoic in the Aomori district, northern Japan. Mem Geol Soc Jpn. 1992; 37: 25–37.

33. Koizumi I, Usio N, Kawai T, Azuma N, Masuda R. Loss of genetic diversity means loss of geological information: The endangered Japanese crayfish exhibits remarkable historical footprints. PLoS One. 2012; 7: e33986. https://doi.org/10.1371/journal.pone.0033986 PMID: 22470505

34. Ooyagi A, Mokodongan DF, Montenegro J, Mandagi IF, Koizumi N, Machida Y, et al. Phylogeography of the eight-barbel loach Lefua nikkonis (Cypriniformes: Nemacheilidae): how important were straits in northern Japan as biogeographical barriers? Ichthyol Res. 2018; 65: 115–126.

35. Original S code by Becker RA, Wilks AR. R version by Brownrigg R. mapdata: Extra Map Databases. 2018. https://cran.r-project.org/package=mapdata

36. Wang SY, Luo J, Murphy RW, Wu SF, Zhu CL, Gao Y, et al. Origin of Chinese goldfish and sequential loss of genetic diversity accompanies new breeds. PLoS One. 2013; 8: 1–8. https://doi.org/10.1371/ journal.pone.0059571 PMID: 23527220

37. Gao Y, Wang SY, Luo J, Murphy RW, Du R, Wu SF, et al. Quaternary palaeoenvironmental oscillations drove the evolution of the Eurasian Carassius auratus complex (Cypriniformes, Cyprinidae). J Biogeogr. 2012; 39: 2264–2278.

38. Mishina T, Takada M, Takeshima H, Nakano M, Tabata R, Nishida M, et al. Molecular identification of species and ploidy of Carassius fishes in Lake Biwa, using mtDNA and microsatellite multiplex PCRs. Ichthyol Res. 2014; 61: 169–175.

39. Excoffier L, Lischer HEL. Arlequin suite ver 3.5: A new series of programs to perform population genet- ics analyses under Linux and Windows. Mol Ecol Resour. 2010; 10: 564–567. https://doi.org/10.1111/j. 1755-0998.2010.02847.x PMID: 21565059

40. Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 PMID: 24451623

41. Bruvo R, Michiels NK, D’Souza TG, Schulenburg H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol. 2004; 13: 2101–2106. https://doi.org/10. 1111/j.1365-294X.2004.02209.x PMID: 15189230

42. Clark LV, Jasieniuk M. polysat: An R package for polyploid microsatellite analysis. Mol Ecol Resour. 2011; 11: 562–566. https://doi.org/10.1111/j.1755-0998.2011.02985.x PMID: 21481215

43. Paradis E, Schliep K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019; 35: 526–528. https://doi.org/10.1093/bioinformatics/bty633 PMID: 30016406

44. Phillips CA, Uzzell T, Spolsky CM, Serb JM, Szafoni RE, Pollowy TR. Persistent high levels of tetra- ploidy in salamanders of the Ambystoma jeffersonianum complex. J Herpetol. 1997; 31: 530–535.

45. Bogart JP, Bartoszek J, Noble DWA, Bi K. Sex in unisexual salamanders: discovery of a new sperm donor with ancient affinities. Heredity. 2009; 103: 483–493. https://doi.org/10.1038/hdy.2009.83 PMID: 19639004

46. Charney ND, Kubel JE, Woodard CT, Carbajal-Gonza´lez BI, Avis S, Blyth JA, et al. Survival of polyploid hybrid salamander embryos. BMC Dev Biol. 2019; 19: 1–15.

47. Yamaguchi F, Fujimoto T, Suzuki H, Tanaka H, Murakami M, Yamaha E, et al. Diploid and aneuploid sperm in tetraploid ginbuna, Carassius auratus langsdorfii. Theriogenology. 2021; 172: 95–105.

48. Onozato H, Torisawa M, Kusama M, December R. Distribution of the gynogenetic polyploid crucian carp, Carassius auratus in Hokkaido, Japan. Jpn J Ichthyol. 1983; 30: 184–190.

49. Hakoyama H, Iwasa Y. Coexistence of a sexual and an unisexual form stabilized by parasites. J Theor Biol. 2004; 226: 185–194. https://doi.org/10.1016/j.jtbi.2003.08.012 PMID: 14643188

50. Sˇ imkova´ A, Kosˇař M, Vetesˇn´ık L, Vyskočilova´ M. MHC genes and parasitism in Carassius gibelio, a dip- loid-triploid fish species with dual reproduction strategies. BMC Evol Biol. 2013; 13: 122.

51. Sˇ imkova´ A, Hyrsˇl P, Halačka K, Vetesˇn´ık L. Physiological and condition-related traits in the gynoge- netic-sexual Carassius auratus complex: different investments promoting the coexistence of two repro- ductive forms? BMC Evol Biol. 2015; 15: 1–14.

52. Sezaki K, Watabe S, Tsukamoto K, Hashimoto K. Effects of increase in ploidy status on respiratory function of ginbuna, Carassius auratus langsdorfi (Cyprinidae). Comp Biochem Physiol Part A Physiol. 1991; 99: 123–127.

53. Suzuki T, Nagano H, Kobayashi T, Ueno K. Seasonal changes in the number of larvae and juveniles of crucian carps in the reed zone of Lake Biwa based on (sub) species identification using RAPD markers. Nippon Suisan Gakkaishi. 2005; 71: 10–15.

54. Niemeitz A, Kreutzfeldt R, Schartl M, Parzefall J, Schlupp I. Male mating behaviour of a molly, Poecilia latipunctata: A third host for the sperm-dependent Amazon molly, Poecilia formosa. Acta Ethol. 2002; 5: 45–49.

55. Parzefall J, Schartl M. Biogeography of the Amazon molly, Poecilia formosa. J Biogeogr. 2002; 29: 1– 6.

56. Choleva L, Apostolou A, Rab P, Janko K. Making it on their own: sperm-dependent hybrid fishes (Cobi- tis) switch the sexual hosts and expand beyond the ranges of their original sperm donors. Philos Trans R Soc B Biol Sci. 2008; 363: 2911–2919.

57. Janko K, Culling MA, Ra´b P, Kotl´ık P. Ice age cloning—comparison of the Quaternary evolutionary his- tories of sexual and clonal forms of spiny loaches (Cobitis; Teleostei) using the analysis of mitochondrial DNA variation. Mol Ecol. 2005; 14: 2991–3004.

58. Xiao J, Zou T, Chen Y, Chen L, Liu S, Tao M, et al. Coexistence of diploid, triploid and tetraploid crucian carp (Carassius auratus) in natural waters. BMC Genet. 2011; 12: 20.

59. Liu XL, Jiang FF, Wang ZW, Li XY, Li Z, Zhang XJ, et al. Wider geographic distribution and higher diver- sity of hexaploids than tetraploids in Carassius species complex reveal recurrent polyploidy effects on adaptive evolution. Sci Rep. 2017; 7: 1–10.

60. Liu S, Sezaki K, Hashimoto K, Nakamura M. Distribution of polyploids of “Ginbuna” Carassius auratus langsdorfi in Japan. Bull Jpn Soc Sci Fish. 1980; 46: 413–418.

61. Takada M, Katsunori T, Mutsumi N. Distribution and habitats of Carassius auratus in the Ryukyu Archi- pelago: comparisons between indigenous and introduced populations. Jpn J Ichthyol. 2010; 57: 113– 123.

62. Ito T, Fujita T, Hosoya K. Discovery of crucian carp with unusual morphology from the Yufutsu Moor, Hokkaido, Japan. Jpn J Ichthyol. 2008; 55: 105–109.

63. Muramoto J. A note on triploidy of the Funa. Proc Jpn Acad. 1975; 51: 583–587.

64. Fujioka Y. Effects of hormone treatments and temperature on sex-reversal of nigorobuna Carassius carassius grandoculis. Fish Sci. 2002; 68: 889–893.

65. Wen M, Feron R, Pan Q, Guguin J, Jouanno E, Herpin A, et al. Sex chromosome and sex locus charac- terization in goldfish, Carassius auratus (Linnaeus, 1758). BMC Genomics. 2020; 21: 1–12.

66. Goto-Kazeto R, Abe Y, Masai K, Yamaha E, Adachi S, Yamauchi K. Temperature-dependent sex differ- entiation in goldfish: Establishing the temperature-sensitive period and effect of constant and fluctuating water temperatures. Aquaculture. 2006; 254: 617–624.

67. Golovinskaya KA, Romashov DD, Tcherfas NB. Unisexual and bisexual forms of the crucian carp. Vop Ikhtiol. 1965; 54: 614–629.

68. Kobayashi H, Ochi N. Chromosome studies of the hybrids, Ginbuna (Carassius auratus langsdorfii) × Kinbuna (Carassius auratus subsp.) and Ginbuna × loach (Misgurnus anguillicaudatus) (in Japanese with English abstract). Zool Mag. 1972; 81: 67–71.

69. Dong S, Taniguchi N. Clonal nature of offspings of Ginbuna Carassius langsdorfii by RAPD-PCR and isozyme patterns. Nippon Suisan Gakkaishi. 1996; 62: 891–896.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る