リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Added value of contrast enhancement boost images in routine multiphasic contrast-enhanced CT for the diagnosis of small (<20 mm) hypervascular hepatocellular carcinoma」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Added value of contrast enhancement boost images in routine multiphasic contrast-enhanced CT for the diagnosis of small (<20 mm) hypervascular hepatocellular carcinoma

Yabe, Shinji Sofue, Keitaro Hori, Masatoshi Maebayashi, Tomoki Nishigaki, Megumi Tsujita, Yushi Yamaguchi, Takeru Ueshima, Eisuke Ueno, Yoshiko Murakami, Takamichi 神戸大学

2023.03

概要

Purpose To investigate the added value of contrast enhancement boost (CE-boost) images in multiphasic contrast-enhanced CT (CE-CT) for diagnosing small (<20 mm) hypervascular hepatocellular carcinoma (HCC). Materials and methods This retrospective study included 69 patients (age, 74 ± 8 years; 52 men) with 70 hypervascular HCCs (<20 mm) who underwent multiphasic CE-CT (pre-contrast, late arterial phase [LAP], portal venous phase [PVP], and equilibrium phase). Two types of CE-boost images were generated by subtracting PVP from LAP (LA-PV) images and LAP from PVP (PV-LA) images to enhance the contrast effect of hepatic arterial and portal venous perfusion more selectively. Tumor-to-liver contrast-to-noise ratios (CNRs) in CE-boost images were compared with those in CE-CT images using the Wilcoxon signed-rank test. Two independent readers reviewed the imaging datasets: CE-CT alone and CE-CT with CE-boost images. The diagnostic performance of each dataset was compared using jackknife alternative free-response receiver operating characteristics (JAFROC-1). Results The tumor-to-liver CNRs in the LA-PV (6.4 ± 3.0) and PV-LA (−3.3 ± 2.1) images were greater than those in the LAP (3.2 ± 1.7) and PVP images (−1.1 ± 1.4) (p <.001 for both). The reader-averaged figures of merit were 0.751 for CE-CT alone and 0.807 for CE-CT with CE-boost images (p <.001). Sensitivities increased by adding CE-boost images for both readers (p <.001 and = 0.03), while positive predictive values were equivalent (p >.99). Conclusion Adding CE-boost images to multiphasic CE-CT can improve the diagnostic accuracy and sensitivity for small hypervascular HCC by increasing the tumor-to-liver CNR.

この論文で使われている画像

参考文献

[1] J.A. Marrero, L.M. Kulik, C.B. Sirlin, A.X. Zhu, R.S. Finn, M.M. Abecassis, L.R. Roberts, J.K. Heimbach, Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American association for the study of liver diseases, Hepatology. 68 (2018) 723–750.

[2] A. Tang, M.R. Bashir, M.T. Corwin, I. Cruite, C.F. Dietrich, R.K.G. Do, E.C. Ehman, K.J. Fowler, H.K. Hussain, R.C. Jha, A.R. Karam, A. Mamidipalli, R.M. Marks, D. G. Mitchell, T.A. Morgan, M.A. Ohliger, A. Shah, K.-N. Vu, C.B. Sirlin, Evidence Supporting LI-RADS Major Features for CT- and MR Imaging–based Diagnosis of Hepatocellular Carcinoma: A Systematic Review, Radiology. 286 (2018) 29–48.

[3] S.H. Kim, D. Choi, S.H. Kim, J.H. Lim, W.J. Lee, M.J. Kim, H.K. Lim, S.J. Lee, Ferucarbotran-enhanced MRI versus triple-phase MDCT for the preoperative detection of hepatocellular carcinoma, AJR Am. J. Roentgenol. 184 (4) (2005) 1069–1076.

[4] M. Tsurusaki, K. Sofue, H. Isoda, M. Okada, K. Kitajima, T. Murakami, Comparison of gadoxetic acid-enhanced magnetic resonance imaging and contrast-enhanced computed tomography with histopathological examinations for the identification of hepatocellular carcinoma: a multicenter phase III study, J. Gastroenterol. 51 (2016) 71–79.

[5] R.F. Hanna, V.Z. Miloushev, A.n. Tang, L.A. Finklestone, S.Z. Brejt, R.S. Sandhu, C. S. Santillan, T. Wolfson, A. Gamst, C.B. Sirlin, Comparative 13-year meta-analysis of the sensitivity and positive predictive value of ultrasound, CT, and MRI for detecting hepatocellular carcinoma, Abdom Radiol (NY). 41 (1) (2016) 71–90.

[6] J. Li, J. Wang, L. Lei, G. Yuan, S. He, The diagnostic performance of gadoxetic acid disodium-enhanced magnetic resonance imaging and contrast-enhanced multi- detector computed tomography in detecting hepatocellular carcinoma: a meta- analysis of eight prospective studies, Eur. Radiol. 29 (2019) 6519–6528.

[7] M. Di Martino, D. Marin, A. Guerrisi, M. Baski, F. Galati, M. Rossi, S. Brozzetti, R. Masciangelo, R. Passariello, C. Catalano, Intraindividual Comparison of Gadoxetate Disodium–enhanced MR Imaging and 64-Section Multidetector CT in the Detection of Hepatocellular Carcinoma in Patients with Cirrhosis, Radiology. 256 (3) (2010) 806–816.

[8] U. Motosugi, T. Ichikawa, H. Sou, K. Sano, L. Tominaga, A. Muhi, T. Araki, Distinguishing hypervascular pseudolesions of the liver from hypervascular hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging, Radiology. 256 (1) (2010) 151–158.

[9] D. Marin, R.C. Nelson, E. Samei, E.K. Paulson, L.M. Ho, D.T. Boll, D.M. DeLong, T. T. Yoshizumi, S.T. Schindera, Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection–initial clinical experience, Radiology. 251 (2009) 771–779.

[10] B. Pregler, L.P. Beyer, A. Teufel, C. Niessen, C. Stroszczynski, H. Brodoefel, P. Wiggermann, Low Tube Voltage Liver MDCT with Sinogram-Affirmed Iterative Reconstructions for the Detection of Hepatocellular Carcinoma, Sci. Rep. 7 (2017) 9460.

[11] W.P. Shuman, D.E. Green, J.M. Busey, L.M. Mitsumori, E. Choi, K.M. Koprowicz, K. M. Kanal, Dual-energy liver CT: effect of monochromatic imaging on lesion detection, conspicuity, and contrast-to-noise ratio of hypervascular lesions on late arterial phase, AJR Am. J. Roentgenol. 203 (2014) 601–606.

[12] G.J. Hanson, G.J. Michalak, R. Childs, B. McCollough, A.N. Kurup, D.M. Hough, J. M. Frye, J.L. Fidler, S.K. Venkatesh, S. Leng, L. Yu, A.F. Halaweish, W.S. Harmsen, C.H. McCollough, J.G. Fletcher, Low kV versus dual-energy virtual monoenergetic CT imaging for proven liver lesions: what are the advantages and trade-offs in conspicuity and image quality? A pilot study, Abdom Radiol (NY). 43 (2018) 1404–1412.

[13] P. Lv, X.Z. Lin, K. Chen, J. Gao, Spectral CT in patients with small HCC: investigation of image quality and diagnostic accuracy, Eur. Radiol. 22 (2012) 2117–2124.

[14] S.-Y. Gao, X.-P. Zhang, Y. Cui, Y.-S. Sun, L. Tang, X.-T. Li, X.-Y. Zhang, J. Shan, Fused monochromatic imaging acquired by single source dual energy CT in hepatocellular carcinoma during arterial phase: an initial experience, Chin. J. Cancer Res. 26 (2014) 437–443.

[15] J. Yoo, J.M. Lee, J.H. Yoon, I. Joo, E.S. Lee, S.K. Jeon, S. Jang, Comparison of low kVp CT and dual-energy CT for the evaluation of hypervascular hepatocellular carcinoma, Abdom Radiol (NY). 46 (7) (2021) 3217–3226.

[16] M. Matsuda, T. Tsuda, T. Kido, H. Tanaka, H. Nishiyama, T. Itoh, K. Nakao, M. Hirooka, T. Mochizuki, Dual-Energy Computed Tomography in Patients With Small Hepatocellular Carcinoma: Utility of Noise-Reduced Monoenergetic Images for the Evaluation of Washout and Image Quality in the Equilibrium Phase, J. Comput. Assist. Tomogr. 42 (2018) 937–943.

[17] S. Yukisawa, H. Okugawa, Y. Masuya, S. Okabe, H. Fukuda, M. Yoshikawa, M. Ebara, H. Saisho, Multidetector helical CT plus superparamagnetic iron oxide- enhanced MR imaging for focal hepatic lesions in cirrhotic liver: A comparison with multi-phase CT during hepatic arteriography, Eur. J. Radiol. 61 (2007) 279–289.

[18] Y. Imai, T. Murakami, M. Hori, K. Fukuda, T. Kim, T. Marukawa, H. Abe, M. Kuwabara, H. Onishi, K. Tsuda, Y. Sawai, M. Kurokawa, N. Hayashi, M. Monden, H. Nakamura, Hypervascular hepatocellular carcinoma: Combined dynamic MDCT and SPIO-enhanced MRI versus combined CTHA and CTAP, Hepatol. Res. 38 (2008) 147–158.

[19] H.-J. Jang, J.H. Lim, S.J. Lee, C.K. Park, H.S. Park, Y.S. Do, Hepatocellular Carcinoma: Are Combined CT during Arterial Portography and CT Hepatic Arteriography in Addition to Triple-Phase Helical CT All Necessary for Preoperative Evaluation? Radiology. 215 (2000) 373–380.

[20] Y. Shinagawa, K. Sakamoto, K. Sato, E. Ito, H. Urakawa, K. Yoshimitsu, Usefulness of new subtraction algorithm in estimating degree of liver fibrosis by calculating extracellular volume fraction obtained from routine liver CT protocol equilibrium phase data: Preliminary experience, Eur. J. Radiol. 103 (2018) 99–104.

[21] H. Iizuka, Y. Yokota, M. Kidoh, S. Oda, O. Ikeda, Y. Tamura, Y. Funama, D. Sakabe, T. Nakaura, Y. Yamashita, D. Utsunomiya, Contrast Enhancement Boost Technique at Aortic Computed Tomography Angiography: Added Value for the Evaluation of Type II Endoleaks After Endovascular Aortic Aneurysm Repair, Acad. Radiol. 26 (2019) 1435–1440.

[22] W.D. Foley, T.A. Mallisee, M.D. Hohenwalter, C.R. Wilson, F.A. Quiroz, A.J. Taylor, Multiphase hepatic CT with a multirow detector CT scanner, AJR Am. J. Roentgenol. 175 (3) (2000) 679–685.

[23] T. Murakami, T. Kim, M. Takamura, M. Hori, S. Takahashi, M.P. Federle, K. Tsuda, K. Osuga, S. Kawata, H. Nakamura, M. Kudo, Hypervascular hepatocellular carcinoma: detection with double arterial phase multi-detector row helical CT, Radiology. 218 (2001) 763–767.

[24] S.H. Kim, A. Kamaya, J.K. Willmann, CT perfusion of the liver: principles and applications in oncology, Radiology. 272 (2014) 322–344.

[25] American College of Radiology. Liver Imaging Reporting and Data System. https:// www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LIRADS. Accessed April 5, 2022.

[26] D.P. Chakraborty, Analysis of location specific observer performance data: validated extensions of the jackknife free-response (JAFROC) method, Acad. Radiol. 13 (2006) 1187–1193.

[27] D.P. Chakraborty, Validation and statistical power comparison of methods for analyzing free-response observer performance studies, Acad. Radiol. 15 (12) (2008) 1554–1566.

参考文献をもっと見る