リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「マグマにおける水の溶解に関する化学熱力学的考察:理想混合モデルの破れと減圧発泡に伴う温度変化の見積り」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

マグマにおける水の溶解に関する化学熱力学的考察:理想混合モデルの破れと減圧発泡に伴う温度変化の見積り

西脇, 瑞紀 NISHIWAKI, Mizuki ニシワキ, ミズキ 九州大学

2023.03.20

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Chemical-Thermodynamic Explorations on the
Dissolution of Water in Magma: Breaking of the
Ideal Mixing Model and Estimations of
Temperature Change with Decompression-Induced
Vesiculation
西脇, 瑞紀

https://hdl.handle.net/2324/6787423
出版情報:Kyushu University, 2022, 博士(理学), 課程博士
バージョン:
権利関係:

(様式3)





論 文 名




西脇

瑞紀

Chemical-Thermodynamic Explorations on the Dissolution of Water in

Magma: Breaking of the Ideal Mixing Model and Estimations of Temperature Change with
Decompression-Induced Vesiculation

(マグマにおける水の溶解に関する化学熱力学的考察:理想混合モデルの破れと減圧発泡に伴う温度
変化の見積り )






















Since water solubility in magmas (silicate melts) is a very fundamental and important piece
of information in volcanology, it has been investigated extensively from both experimental and
theoretical perspectives. Nevertheless, there has been no consensus on the consistency between
experimentally determined water solubility values and those estimated through a chemical
thermodynamics-based theoretical equation. In this study, I explicitly revisit this traditional
problem and consider how the consistency should be established between experimental and
theoretical values for the partial molar volume and heat of dissolution of water, which
characterize the pressure- and temperature-dependence of water solubility, respectively.
The partial molar volume of water in silicate melt has been often estimated through an
indirect way in which an experimentally determined water solubility in silicate melt is
substituted into a theoretical equation derived from chemical thermodynamics. However, it has
been also often reported that the values estimated in such a way significantly deviated from the
value estimated through a direct method such as density measurement of quenched glass. In
this study, I attributed this paradox to the assumption of the ideal mixing of bridging oxygen
(O) of silicate and water (molecular water H2Om and hydroxyl groups OH), i.e., neglecting
non-ideality, in the theoretical equation of water solubility used in the past. Therefore, I showed
that the assumption of the ideal mixing is broken by a simple calculation, and by applying the
asymmetric regular solution model for the three components mentioned above, I found that
strong positive non-ideality appears when H2Om enters an environment with high O content.
Next, by using the above results to describe the equilibrium constant for the first dissolution
reaction of water into melt (r1: H2Om (vapor) ⇔ H2Om (in melt)) and substituting it into the
theoretical equation, I calculated the enthalpy change (i.e., the heat of dissolution of water into
melt) for r1 in a wide range of temperatures and pressures. As a result, the heat of dissolution
for r1 is about −20 kJ/mol regardless of the temperature and pressure, indicating that it is an
exothermic reaction. By adding the heat of dissolution for the second reaction (r2: H2Om (in
melt) + Si-O-Si ⇔ 2 Si-OH, endothermic), the heat of dissolution for the entire dissolution
reaction can also be calculated over a wide temperature and pressure range. The results show a

shift toward endothermic at higher temperatures and toward exothermic at lower temperatures
and higher pressures, but the magnitude of the shift is highly dependent on the previously
estimated value of the heat of dissolution for r2, which varies depending on the method of
measurement of the speciation of H2Om and OH.
Furthermore, based on these values, I numerically calculated the temperature change of
hydrous rhyolitic melt with decompression-induced water vesiculation ascending a volcanic
conduit, assuming it is the equilibrium degassing in a closed system. The results showed that
the effects of the heat of exsolution of water from melt and the mechanical work of bubble
expansion contributed to warming and cooling the system, respectively, and the sum of them
resulted in slight cooling due to the relation of their magnitudes.
In the future, by combining the results of this study with the effect of latent heat of
crystallization of magma and solving them simultaneously, it may be possible to construct a
new conduit flow model with an enhanced material science aspect that incorporates
temperature changes due to vesiculation and crystallization in magma.

この論文で使われている画像

参考文献

Bagdassarov, N., Dorfman, A., and Dingwell, D. B., 2000. Effect of alkalis, phosphorus,

and water on the surface tension of haplogranite melt. Am. Mineral. 85 (1), 33-40. https:

//doi.org/10.2138/am-2000-0105

Balzer, R., Behrens, H., Reinsch, S., and Fechtelkord, M., 2019a. Structural investigation

of hydrous phosphate glasses. Phys. Chem. Glasses - Eur. J. Glass. Sci. Technol. B 60 (2),

49-61. https://doi.org/10.13036/17533562.60.2.041

Balzer, R., Behrens, H., Schuth, S., Waurischk, T., Reinsch, S., M¨

uller, R., Fechtelkord, M.,

and Deubener, J., 2019b. The influence of H2 O and SiO2 on the structure of silicoborate glasses.

J. Non-Cryst. Solids 519 (1), 38-51. https://doi.org/10.1016/j.jnoncrysol.2019.05.030

Balzer, R., Behrens, H., Waurischk, T., Reinsch, S., M¨

uller, R., Kiefer, P., Deubener, J.,

and Fechtelkord, M., 2020. Water in alkali aluminosilicate glasses. Front. Mater. 7, 85.

https://doi.org/10.3389/fmats.2020.00085

Bartholomew, R. F., Bulter, B. L., Hoover, H. L. and Wu, C. K., 1980. Infrared spectra

of a water-containing glass. J. Am. Ceram. Soc. 63 (9-10), 481-485. https://doi.org/10.

1111/j.1151-2916.1980.tb10748.x

Bauer, U., Behrens, H., Fechtelkord, M., Reinsch, S., and Deubener, J., 2015. Water- and

boron speciation in hydrous soda-lime-borate glasses. J. Non-Cryst. Solids 423-424 (1), 58-67.

https://doi.org/10.1016/j.jnoncrysol.2015.05.004

Behrens, H., 2020. Water speciation in oxide glasses and melts. Chem. Geol. 558, 119850.

https://doi.org/10.1016/j.chemgeo.2020.119850

Behrens, H., and Nowak, M., 2003. Quantification of H2 O speciation in silicate glasses and

melts by IR spectroscopy-in situ versus quench techniques. Phase Transit. 76 (1-2), 45-61.

https://doi.org/10.1080/0141159031000076048

Behrens, H., and Yamashita, S., 2008. Water speciation in hydrous sodium tetrasilicate

and hexasilicate melts: Constraint from high temperature NIR spectroscopy. Chem. Geol. 256

(3-4), 306-315. https://doi.org/10.1016/j.chemgeo.2008.06.053

Behrens, H., Bauer, U., Reinsch, R., Kiefer, P., M¨

uller, R., and Deubener, J., 2018. Structural relaxation mechanisms in hydrous sodium borosilicate glasses. J. Non-Cryst. Solids 497

74

(1), 30-39. https://doi.org/10.1016/j.jnoncrysol.2018.05.025

Blander, M., and Katz, J. L., 1975. Bubble nucleation in liquids. AIChE J. 21 (5), 833-848.

https://doi.org/10.1002/aic.690210502

Blank, J. G., Stolper, E. M., and Carroll, M. R., 1993. Solubilities of carbon dioxide and

water in rhyolitic melt at 850◦ C and 750 bars. Earth Planet. Sci. Lett. 119 (1-2), 27-36.

https://doi.org/10.1016/0012-821X(93)90004-S

Blundy, J., Cashman, K., and Humphreys, M., 2006. Magma heating by decompressiondriven crystallization beneath andesite volcanoes. Nature, 443 (7107), 76-80.

https://doi.org/10.1038/nature05100

Botcharnikov, R. E., Behrens, H., and Holtz, F., 2006. Solubility and speciation of C-O-H

fluids in andesitic melt at T = 1100-1300◦ C and P = 200 and 500 MPa. Chem. Geol. 229

(1-3), 125-143. https://doi.org/10.1016/j.chemgeo.2006.01.016

Bouhifd, A. M., Whittington, A., and Richet, P., 2001. Partial molar volume of water in

phonolitic glasses and liquids. Contrib. Mineral. Petrol. 142 (2), 235-243.

https://doi.org/10.1007/s004100100286

Bureau, H., and Keppler, H., 1999. Complete miscibility between silicate melts and hydrous

fluids in the upper mantle: experimental evidence and geochemical implications. Earth Planet.

Sci. Lett. 165 (2), 187-196. https://doi.org/10.1016/S0012-821X(98)00266-0

Buresti, G., and Casarosa, C., 1989. One-dimensional adiabatic flow of equilibrium gasparticle mixtures in long vertical ducts with friction. J. Fluid Mech. 203, 251-272.

https://doi.org/10.1017/S002211208900145X

Burnham, C. W., 1975. Water and magmas; a mixing model. Geochim. Cosmochim. Acta

39 (8), 1077-1084. https://doi.org/10.1016/0016-7037(75)90050-2

Burnham, C. W., 1979. The importance of volatile constituents., in: Yoder, H. S., The

evolution of the igneous rocks. Princeton University Press, pp. 439-482.

Burnham, C. W., and Davis, N. F., 1971. The role of H2 O in silicate melts: I. P-V-T

relations in the system NaAlSi3 O8 -H2 O to 10 kilobars and 1000◦ C. Am. J. Sci. 270 (1), 54-79.

https://doi.org/10.2475/ajs.270.1.54

Burnham, C. W., and Davis, N. F., 1974. The role of H2 O in silicate melts: II. Thermodynamic and phase relations in the system NaAlSi3 O8 -H2 O to 10 kilobars, 700◦ to 1100 ◦ C. Am.

J. Sci. 274 (8), 902-940. https://doi.org/10.2475/ajs.274.8.902

Burnham, C. W., and Jahns, R. H., 1962. A method for determining the solubility of water

in silicate melts. Am. J. Sci. 260 (10), 721-745. https://doi.org/10.2475/ajs.260.10.721

Burnham, C. W., Holloway, J. R., and Davis, N. F., 1969. Thermodynamic properties of

water to 1,000◦ C and 10,000 bars. Geol. Soc. Am. 132, 1-96. https://doi.org/10.1130/

75

SPE132-p1

Cashman, K. V., and Sparks, R. S. J., 2013. How volcanoes work: A 25 year perspective.

Geol. Soc. Am. Bull. 125 (5-6), 664-690. https://doi.org/10.1130/B30720.1

Cassidy, M., Manga, M., Cashman, K., and Bachmann, O., 2018. Controls on explosiveeffusive volcanic eruption styles. Nature communications, 9 (1), 1-16.

https://doi.org/10.1038/s41467-018-05293-3

Cluzel, N., Laporte, D., Provost, A., and Kannewischer, I., 2008. Kinetics of heterogeneous

bubble nucleation in rhyolitic melts: implications for the number density of bubbles in volcanic

conduits and for pumice textures. Contrib. Mineral. Petrol. 156 (6), 745-763. https:

//doi.org/10.1007/s00410-008-0313-1

Costa, A., Melnik, O., and Sparks, R. S. J., 2007a. Controls of conduit geometry and

wallrock elasticity on lava dome eruptions. Earth Planet. Sci. Lett. 260 (1-2), 137-151.

https://doi.org/10.1016/j.epsl.2007.05.024

Costa, A., Melnik, O., and Vedeneeva, E., 2007b. Thermal effects during magma ascent in conduits. J. Geophys. Res. Solid Earth, 112, B12205. https://doi.org/10.1029/

2007JB004985

Di Genova, D., Romano, C., Giordano, D., and Alletti, M., 2014. Heat capacity, configurational heat capacity and fragility of hydrous magmas. Geochim. Cosmochim. Acta 142,

314-333. https://doi.org/10.1016/j.gca.2014.07.012

Dingwell, D. B., 1998. The glass transition in hydrous granitic melts. Phys. Earth Planet.

Inter. 107 (1-3), 1-8. https://doi.org/10.1016/S0031-9201(97)00119-2

Dixon, J. E., Stolper, E. M., and Holloway, J. R., 1995. An experimental study of water

and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and

solubility models. J. Petrol. 36 (6), 1607-1631. https://doi.org/10.1093/oxfordjournals.

petrology.a037267

Dobran, F., 1992. Nonequilibrium flow in volcanic conduits and application to the eruptions

of Mt. St. Helens on May 18, 1980, and Vesuvius in AD 79. J. Volcanol. Geotherm. Res. 49

(3-4), 285-311. https://doi.org/10.1016/0377-0273(92)90019-A

Duan, X., 2014. A general model for predicting the solubility behavior of H2 O-CO2 fluids in silicate melts over a wide range of pressure, temperature and compositions. Geochim.

Cosmochim. Acta 125, 582-609. https://doi.org/10.1016/j.gca.2013.10.018

Eichelberger, J. C., 1995. Silicic volcanism: ascent of viscous magmas from crustal reservoirs. Annu. Rev. Earth Planet. Sci. 23 (1), 41-63.

https://doi.org/10.1146/annurev.ea.23.050195.000353

Epel’baum, M. B., 1973. Surface tension of felsic magmatic melts at high temperatures and

76

pressure. Geochem. Int. 10, 343-345.

Ernsberger, F., 1977. Molecular water in glass. J. Am. Ceram. Soc., 60 (1-2), 91-92.

Gardner, J. E., 2012. Surface tension and bubble nucleation in phonolite magmas. Geochim.

Cosmochim. Acta 76, 93-102. https://doi.org/10.1016/j.gca.2011.10.017

Gardner, J. E., and Ketcham, R. A., 2011. Bubble nucleation in rhyolite and dacite melts:

temperature dependence of surface tension. Contrib. Mineral. Petrol. 162 (5), 929-943.

https://doi.org/10.1007/s00410-011-0632-5

Gardner, J. E., Ketcham, R. A., and Moore, G., 2013. Surface tension of hydrous silicate

melts: Constraints on the impact of melt composition. J. Volcanol. Geotherm. Res. 267,

68-74. https://doi.org/10.1016/j.jvolgeores.2013.09.007

Gardner, J. E., Hajimirza, S., Webster, J. D., and Gonnermann, H. M., 2018. The impact

of dissolved fluorine on bubble nucleation in hydrous rhyolite melts. Geochim. Cosmochim.

Acta 226, 174-181. https://doi.org/10.1016/j.gca.2018.02.013

Gerya, T. V., Maresch, W. V., Burchard, M., Zakhartchouk, V., Doltsinis, N. L., and

Fockenberg, T., 2005. Thermodynamic modeling of solubility and speciation of silica in H2 O–

SiO2 fluid up to 1300◦ C and 20 kbar based on the chain reaction formalism. Eur. J. Mineral.

17 (2), 269-283. https://doi.org/10.1127/0935-1221/2005/0017-0269

Ghiorso, M. S., and Gualda, G. A., 2015. An H2 O-CO2 mixed fluid saturation model

compatible with rhyolite-MELTS. Contrib. Mineral. Petrol. 169 (6), 1-30.

https://doi.org/10.1007/s00410-015-1141-8

Giberti, G., and Wilson, L., 1990. The influence of geometry on the ascent of magma in

open fissures. Bull. Volcanol. 52, 515-521. https://doi.org/10.1007/BF00301532

Gonnermann, H. M., 2015. Magma fragmentation. Annu. Rev. Earth Planet. Sci. 43 (1),

431-458. https://doi.org/10.1146/annurev-earth-060614-105206

Gonnermann, H. M., and Gardner, J. E., 2013. Homogeneous bubble nucleation in rhyolitic

melt: Experiments and nonclassical theory. Geochem. Geophys. 14 (11), 4758-4773. https:

//doi.org/10.1002/ggge.20281

Gonnermann, H. M., and Manga, M., 2007. The fluid mechanics inside a volcano. Annu.

Rev.

Fluid Mech., 39, 321-356.

https://doi.org/10.1146/annurev.fluid.39.050905.

110207

Goranson, R. W., 1931. The solubility of water in granite magmas. Am. J. Sci. Ser. 5, 22

(132), 481-502. https://doi.org/10.2475/ajs.s5-22.132.481

Goranson, R. W., 1938. Silicate-water systems: phase equilibria in the NaAlSi3 O8 -H2 O

and KAlSi3 O8 -H2 O systems at high temperatures and pressures. Am. J. Sci. 35, 71-91.

https://earth.geology.yale.edu/~ajs/1938-A/71.pdf

77

Guggenheim E. A., 1952. Mixtures. Oxford University Press. 270 pp.

Haar, L., Gallagher, J. S., and Kell, G. S., 1984. NBS/NRC steam tables: Thermodynamic

and transport properties and computer programs for vapor and liquid states of water in SI

units. Hemisphere, Washington, DC, 320 pp.

Hamada, M., Laporte, D., Cluzel, N., Koga, K. T., and Kawamoto, T., 2010. Simulating bubble number density of rhyolitic pumices from Plinian eruptions: constraints from fast

decompression experiments. Bull. Volcanol. 72 (6), 735-746. https://doi.org/10.1007/

s00445-010-0353-z

Hirth, J. P., Pound, G. M., and St Pierre, G. R., 1970. Bubble nucleation. Metall. Trans.

1 (4), 939-945. https://doi.org/10.1007/BF02811776

Holloway, J. R., 1977. Fugacity and activity of molecular species in supercritical fluids. In:

Fraser, D. G. (Ed.), Thermodynamics in geology. NATO Advanced Study Institutes Series 30.

Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1252-2_9

Holloway, J. R. and Blank, J. G., 1994. Application of experimental results to C−O−H

species in natural melts. In: Carroll, M. R. and Holloway, J. R. (Eds.), Volatiles in Magmas.

Mineral. Soc. Am. Rev. Mineral., 30, 187-230.

https://doi.org/10.1515/9781501509674-012

Holtz, F., Behrens, H., Dingwell, D. B., and Johannes, W., 1995. H2 O solubility in haplogranitic melts: compositional, pressure, and temperature dependence. Am. Mineral. 80 (1-2),

94-108. https://doi.org/10.2138/am-1995-1-210

Holtz, F., Behrens, H., Dingwell, D. B., and Taylor, R. P., 1992. Water solubility in

aluminosilicate melts of haplogranite composition at 2 kbar. Chem. Geol. 96 (3-4), 289-302.

https://doi.org/10.1016/0009-2541(92)90060-I

Hui, H., Zhang, Y., Xu, Z., and Behrens, H., 2008. Pressure dependence of the speciation

of dissolved water in rhyolitic melts. Geochim. Cosmochim. Acta 72 (13), 3229-3240. https:

//doi.org/10.1016/j.gca.2008.03.025

Iacono-Marziano, G., Morizet, Y., Le Trong, E., and Gaillard, F., 2012. New experimental

data and semi-empirical parameterization of H2 O-CO2 solubility in mafic melts. Geochim.

Cosmochim. Acta 97, 1-23. https://doi.org/10.1016/j.gca.2012.08.035

Iacovino, K., and Till, C. B., 2019. DensityX: A program for calculating the densities of

magmatic liquids up to 1,627◦ C and 30 kbar. Volcanica 2 (1), 1-10.

https://doi.org/10.30909/vol.02.01.0110

Iacovino, K., Matthews, S., Wieser, P. E., Moore, G. M., and B´egu´e, F., 2021. VESIcal

Part I: An open‐ source thermodynamic model engine for mixed volatile (H2 O-CO2 ) solubility

in silicate melts. Earth Space Sci. 8 (11), e2020EA001584. https://doi.org/10.1029/

78

2020EA001584

Ihinger, P. D., Zhang, Y., and Stolper, E. M., 1999. The speciation of dissolved water in

rhyolitic melt. Geochim. Cosmochim. Acta 63 (21), 3567-3578. https://doi.org/10.1016/

S0016-7037(99)00277-X

Jaupart, C., 1996. Physical models of volcanic eruptions. Chem. Geol. 128 (1-4), 217-227.

https://doi.org/10.1016/0009-2541(95)00175-1

Kakuda, Y., Uchida, E., and Imai, N., 1991. A new thermodynamic model for ternary solid

solutions (in Japanese). J. Mineral. Soc. Jpn. 20 (1-2), 25-32.

https://doi.org/10.2465/gkk1952.20.25

Kakuda, Y., Uchida, E., and Imai, N., 1994. A new model of the excess Gibbs energy of

mixing for a regular solution. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 70 (10), 163-168.

https://doi.org/10.2183/pjab.70.163

Kennedy, G. C., Wasserburg, G. J., Heard, H. C., and Newton, R. C., 1962. The upper

three-phase region in the system SiO2 -H2 O. Am. J. Sci. 260 (7), 501-521.

https://doi.org/10.2475/ajs.260.7.501

Khitarov, N. I., Kadik, A. A., and Lebedev, E. B., 1963. Estimate of the thermal effect of

the separation of water from felsic melts based on data for the system albite-water. Geokhimiya

7, 637-649.

Khitarov, N. I., Lebedev, Y. B., Dorfman, A. M., and Bagdasarov, N., 1979. Effects of

temperature, pressure, and volatiles on the surface tension of molten basalt. Geochem. Int. 16

(5), 78-86.

Klug, C., and Cashman, K. V., 1996. Permeability development in vesiculating magmas:

implications for fragmentation. Bull. Volcanol. 58 (2), 87-100.

https://doi.org/10.1007/s004450050128

Kojitani, H., and Akaogi, M., 1997. Melting enthalpies of mantle peridotite: calorimetric

determinations in the system CaO-MgO-Al2 O3 -SiO2 and application to magma generation.

Earth Planet. Sci. Lett. 153 (3-4), 209-222. https://doi.org/10.1016/S0012-821X(97)

00186-6

Kolzenburg, S., Giordano, D., Cimarelli, C., and Dingwell, D. B., 2016. In situ thermal

characterization of cooling/crystallizing lavas during rheology measurements and implications

for lava flow emplacement. Geochim. Cosmochim. Acta 195, 244-258.

https://doi.org/10.1016/j.gca.2016.09.022

Kozono, T., 2021. The dynamics of dual-magma-chamber system during volcanic eruptions

inferred from physical modeling. Earth Planets Space 73 (1), 1-11.

https://doi.org/10.1186/s40623-021-01421-4

79

Kuritani, T., 2007. Water and magma (in Japanese). J. Geog. (Chigaku Zasshi) 116 (1),

133-153. https://doi.org/10.5026/jgeography.116.133

Lange, R. A., 1994. The effects of H2 O, CO2 and F on the density and viscosity of silicate

melts. Rev. Mineral. 30, 331-369. https://doi.org/10.1515/9781501509674-015

Lange, R. A., Cashman, K. V., and Navrotsky, A., 1994. Direct measurements of latent

heat during crystallization and melting of a ugandite and an olivine basalt. Contrib. Mineral.

Petrol., 118 (2), 169-181. https://doi.org/10.1007/BF01052867

Legros, F., and Kelfoun, F., 2000. Sustained blasts during large volcanic eruptions. Geology

28 (10), 895-898. https://doi.org/10.1130/0091-7613(2000)28<895:SBDLVE>2.0.CO;2

Lesne, P., Scaillet, B., Pichavant, M., Iacono-Marziano, G., and Beny, J. M., 2011. The

H2 O solubility of alkali basaltic melts: an experimental study. Contrib. Mineral. Petrol. 162

(1), 133-151. https://doi.org/10.1007/s00410-010-0588-x

Liu, Y., Behrens, H., and Zhang, Y., 2004. The speciation of dissolved H2 O in dacitic melt.

Am. Mineral. 89 (2-3), 277-284. https://doi.org/10.2138/am-2004-2-304

Liu, Y., Zhang, Y., and Behrens, H., 2005. Solubility of H2 O in rhyolitic melts at low

pressures and a new empirical model for mixed H2 O−CO2 solubility in rhyolitic melts. J.

Volcanol. Geotherm. Res. 143 (1-3), 219-235. https://doi.org/10.1016/j.jvolgeores.

2004.09.019

Makhluf, A. R., Newton, R. C. and Manning, C. E., 2020. Experimental investigation of

phase relations in the system NaAlSi3 O8 -H2 O at high temperatures and pressures: liquidus

relations, liquid-vapor mixing, and critical phenomena at deep crust-upper mantle conditions.

Contrib. Mineral. Petrol. 175 (8), 76. https://doi.org/10.1007/s00410-020-01711-2

Mangan, M. T., Cashman, K. V., and Newman, S., 1993. Vesiculation of basaltic magma

during eruption. Geology, 21 (2), 157-160.

https://doi.org/10.1130/0091-7613(1993)021<0157:VOBMDE>2.3.CO;2

Mangan, M., and Sisson, T., 2000. Delayed, disequilibrium degassing in rhyolite magma:

decompression experiments and implications for explosive volcanism. Earth Planet. Sci. Lett.

183 (3-4), 441-455. https://doi.org/10.1016/S0012-821X(00)00299-5

Mangan, M., and Sisson, T., 2005. Evolution of melt‐ vapor surface tension in silicic

volcanic systems: Experiments with hydrous melts. J. Geophy. Res. Solid Earth 110 (B1).

https://doi.org/10.1029/2004JB003215

Mangan, M. T., Sisson, T. W., and Hankins, W. B., 2004. Decompression experiments

identify kinetic controls on explosive silicic eruptions. Geophys. Res. Lett. 31 (8).

https://doi.org/10.1029/2004GL019509

Massol, H., Jaupart, C., and Pepper, D. W., 2001. Ascent and decompression of viscous

80

vesicular magma in a volcanic conduit. J. Geophys. Res. Solid Earth 106 (B8), 16223-16240.

https://doi.org/10.1029/2001JB000385

Mastin, L. G., 2002. Insights into volcanic conduit flow from an open‐ source numerical

model. Geochem. Geophys. 3 (7), 1-18. https://doi.org/10.1029/2001GC000192

Mastin, L. G., and Ghiorso, M. S., 2001. Adiabatic temperature changes of magma-gas

mixtures during ascent and eruption. Contrib. Mineral. Petrol., 141 (3), 307-321.

https://link.springer.com/content/pdf/10.1007/s004100000210

Melnik, O., and Sparks, R., 1999. Nonlinear dynamics of lava dome extrusion. Nature 402,

37-41. https://doi.org/10.1038/46950

Mitchell, K. L., 2005. Coupled conduit flow and shape in explosive volcanic eruptions. J.

Volcanol. Geotherm. Res. 143 (1-3), 187-203. https://doi.org/10.1016/j.jvolgeores.

2004.09.017

Moore, G., 2008. Interpreting H2 O and CO2 contents in melt inclusions: constraints from

solubility experiments and modeling. Rev. Mineral. Geochem. 69 (1), 333-362.

https://doi.org/10.2138/rmg.2008.69.9

Moore, G., Vennemann, T., and Carmichael, I. S. E., 1998. An empirical model for the

solubility of H2 O in magmas to 3 kilobars. Am. Mineral. 83 (1-2), 36-42. https://doi.org/

10.2138/am-1998-1-203

Mourtada-Bonnefoi, C. C., and Laporte, D., 2002. Homogeneous bubble nucleation in

rhyolitic magmas: an experimental study of the effect of H2 O and CO2 . J. Geophys. Res. Solid

Earth 107 (B4), ECV-2. https://doi.org/10.1029/2001JB000290

Mourtada-Bonnefoi, C. C., and Laporte, D., 2004. Kinetics of bubble nucleation in a

rhyolitic melt: an experimental study of the effect of ascent rate. Earth Planet. Sci. Lett. 218

(3-4), 521-537. https://doi.org/10.1016/S0012-821X(03)00684-8

Mysen, B. O., 2007. The solution behavior of H2 O in peralkaline aluminosilicate melts at

high pressure with implications for properties of hydrous melts. Geochim. Cosmochim. Acta

71 (7), 1820-1834. https://doi.org/10.1016/j.gca.2007.01.007

Mysen, B. O., and Acton, M., 1999. Water in H2 O-saturated magma-fluid systems: solubility behavior in K2 O-Al2 O3 -SiO2 -H2 O to 2.0 GPa and 1300◦ C. Geochim. Cosmochim. Acta,

63 (22), 3799-3815. https://doi.org/10.1016/S0016-7037(99)00216-1

Mysen, B. O., and Cody, G. D., 2004. Solubility and solution mechanism of H2 O in alkali

silicate melts and glasses at high pressure and temperature. Geochim. Cosmochim. Acta 68

(24), 5113-5126. https://doi.org/10.1016/j.gca.2004.07.021

Mysen, B. O., and Wheeler, K., 2000. Solubility behavior of water in haploandesitic melts

at high pressure and high temperature. Am. Mineral. 85 (9), 1128-1142.

81

https://doi.org/10.2138/am-2000-8-903

Navon, O., and Lyakhovsky, V., 1998. Vesiculation processes in silicic magmas. Geol. Soc.

Spec. Publ. 145 (1), 27-50. https://doi.org/10.1144/GSL.SP.1996.145.01.03

Newman, S., and Lowenstern, J. B., 2002. VolatileCalc: a silicate melt-H2 O-CO2 solution

model written in Visual Basic for excel. Comput. Geosci. 28 (5), 597-604.

https://doi.org/10.1016/S0098-304(01)00081-4

Nishiwaki, M., and Toramaru, A., 2019. Inclusion of viscosity into classical homogeneous

nucleation theory for water bubbles in silicate melts: Reexamination of bubble number density

in ascending magmas. J. Geophys. Res. Solid Earth 124 (8), 8250-8266.

https://doi.org/10.1029/2019JB017796

Nowak, M., and Behrens, H., 1995. The speciation of water in haplogranitic glasses and

melts determined by in situ near-infrared spectroscopy. Geochim. Cosmochim. Acta 59 (16),

3445-3450. https://doi.org/10.1016/0016-7037(95)00237-T

Nowak, M., and Behrens, H., 2001. Water in rhyolitic magmas: getting a grip on a

slippery problem. Earth Planet. Sci. Lett. 184 (2), 515-522. https://doi.org/10.1016/

S0012-821X(00)00343-5

Ochs III, F. A., and Lange, R. A., 1997. The partial molar volume, thermal expansivity, and compressibility of H2 O in NaAlSi3 O8 liquid: new measurements and an internally

consistent model. Contrib. Mineral. Petrol. 129 (2), 155-165. https://doi.org/10.1007/

s004100050329

Ochs III, F. A., and Lange, R. A., 1999. The density of hydrous magmatic liquids. Science

283 (5406), 1314-1317. https://doi.org/10.1126/science.283.5406.1314

Ohlhorst, S., Behrens, H., Holtz, F., and Schmidt, B. C., 2000. Water speciation in aluminosilicate glasses and melts. In: Rammlmair, D., Mederer, J., Oberth¨

ur, Th., Heimann, R. B.,

Pentinghaus, H. (Eds.), Applied Mineralogy in Research, Economy, Technology and Culture.

Proc. 6th Int. Conf. Appl. Mineral, Vol. 1. Balkema, Rotterdam, pp. 193-196.

Orlova, G. P., 1962. Solubility of water in albite melts -under pressure. Int. Geol. Rev. 6

(2), 254-258. https://doi.org/10.1080/00206816409474616

Ostrovsky, I. A., 1966. PT-diagram of the system SiO2 -H2 O. Geol. J. 5 (1), 127-134.

https://doi.org/10.1002/gj.3350050110

Ostrovskii, I. A. and Orlova, G. P., 1966. On the partial molar volume of water in albite

melt. Akad. Nauk SSSR Izv., Ser. Geol. 12, 118-122.

Ostrovskiy I. A., Orlova G. P., and Rudnitskaya, Y. S., 1964. Stoichiometry in the solution

of water in alkali-aluminosilicate melts. Doklady Akad Nauk SSR 157,149-151.

Paillat, O., Elphick, S. C., and Brown, W. L., 1992. The solubility of water in NaAlSi3 O8

82

melts: a re-examination of Ab-H2 O phase relationships and critical behaviour at high pressures.

Contrib. Mineral. Petrol. 112, 490-500. https://doi.org/10.1007/BF00310780

Papale, P., 1997. Modeling of the solubility of a one-component H2 O or CO2 fluid in

silicate liquids. Contrib. Mineral. Petrol. 126 (3), 237-251. https://doi.org/10.1007/

s004100050247

Papale, P., 1999. Modeling of the solubility of a two-component H2 O + CO2 fluid in silicate

liquids. Am. Mineral. 84 (4), 477-492. https://doi.org/10.2138/am-1999-0402

Papale, P., 2001. Dynamics of magma flow in volcanic conduits with variable fragmentation

efficiency and nonequilibrium pumice degassing. J. Geophys. Res. Solid Earth 106 (B6),

11043-11065. https://doi.org/10.1029/2000JB900428

Papale, P., Moretti, R., and Barbato, D., 2006. The compositional dependence of the

saturation surface of H2 O + CO2 fluids in silicate melts. Chem. Geol. 229 (1-3), 78-95.

https://doi.org/10.1016/j.chemgeo.2006.01.013

Papale, P., Moretti, R., and Paonita, A., 2022. Thermodynamics of multi-component gasmelt equilibrium in magmas: Theory, models, and applications. Rev. Mineral. Geochem. 87

(1), 431-556. https://doi.org/10.2138/rmg.2022.87.10

Proussevitch, A. A., and Sahagian, D. L., 1998. Dynamics and energetics of bubble growth

in magmas: analytical formulation and numerical modeling. J. Geophys. Res. Solid Earth 103

(B8), 18223-18251. https://doi.org/10.1029/98JB00906

Richet, P., and Bottinga, Y., 1985. Heat capacity of aluminum-free liquid silicates. Geochim.

Cosmochim. Acta, 49 (2), 471-486. https://doi.org/10.1016/0016-7037(85)90039-0

Richet, P., Hovis, G., and Whittington, A., 2006. Water and magmas: Thermal effects of

exsolution. Earth Planet. Sci. Lett. 241 (3-4), 972-977. https://doi.org/10.1016/j.epsl.

2005.10.015

Ryan, A. G., Russell, J. K., Nichols, A. R., Hess, K. U., and Porritt, L. A., 2015. Experiments and models on H2 O retrograde solubility in volcanic systems. Am. Mineral. 100 (4),

774-786. https://doi.org/10.2138/am-2015-5030

Sahagian, D. L., and Proussevitch, A. A., 1996. Thermal effects of magma degassing.

J. Volcanol. Geotherm. Res. 74 (1-2), 19-38. https://doi.org/10.1016/S0377-0273(96)

00047-9

Sahagian, D., and Proussevitch, A., 2005. Standardized model runs and sensitivity analysis

using the “Bubbledrive-1” volcanic conduit flow model. J. Volcanol. Geotherm. Res, 143 (1-3),

173-185. https://doi.org/10.1016/j.jvolgeores.2004.09.016

Schaller, T., and Sebald, A., 1995. One- and two-dimensional 1 H magic-angle spinning

experiments on hydrous silicate glasses. Solid State Nucl. Magn. Reson. 5 (1), 89-102.

83

https://doi.org/10.1016/0926-2040(95)00028-O

Schmidt, B. C., 2004. Effect of boron on the water speciation in (alumino)silicate melts and

glasses. Geochim. Cosmochim. Acta 68 (24), 5013-5025.

https://doi.org/10.1016/j.gca.2004.06.036

Shaw, H. R., 1964. Theoretical solubility of H2 O in silicate melts: Quasi-crystalline models.

J. Geol. 72 (5), 601-617. https://doi.org/10.1086/627016

Shaw, H. R., 1974. Diffusion of H2 O in granitic liquids: Part I. Experimental data; Part

II. Mass transfer in magma chambers. in Geochemical transport and kinetics 634, 139-170.

Carnegie Inst. Washington Publ.

Shea, T., 2017. Bubble nucleation in magmas: a dominantly heterogeneous process?. J.

Volcanol. Geotherm. Res. 343, 155-170. https://doi.org/10.1016/j.jvolgeores.2017.

06.025

Shen, A., and Keppler, H., 1995. Infrared spectroscopy of hydrous silicate melts to 1000◦

and 10 kbar: Direct observation of H2 O speciation in a diamond-anvil cell. Am. Mineral. 80

(11-12), 1335-1338. https://doi.org/10.2138/am-1995-11-1223

Shen, A., and Keppler, H., 1997. Direct observation of complete miscibility in the albiteH2 O system. Nature 385 (6618), 710-712. https://doi.org/10.1038/385710a0

Shigetomi, S., and Nishiwaki, M., 2022. Exploration of non-trivial relations for the nonsteady state nucleation rate: usefulness of the elliptic theta functions for its experimental

estimations. SN Appl. Sci. 4, 301. https://doi.org/10.1007/s42452-022-05189-4

Shishkina, T. A., Botcharnikov, R. E., Holtz, F., Almeev, R. R., Jazwa, A. M., and Jakubiak,

A. A., 2014. Compositional and pressure effects on the solubility of H2 O and CO2 in mafic

melts. Chem. Geol. 388, 112-129. https://doi.org/10.1016/j.chemgeo.2014.09.001

Silver, L. A., and Stolper, E., 1985. A thermodynamic model for hydrous silicate melts. J.

Geol. 93 (2), 161-178. https://doi.org/10.1086/628938

Silver, L., and Stolper, E., 1989. Water in albitic glasses. J. Petrol. 30 (3), 667-709.

https://doi.org/10.1093/petrology/30.3.667

Silver, L. A., Ihinger, P. D., and Stolper, E., 1990. The influence of bulk composition

on the speciation of water in silicate glasses. Contrib. Mineral. Petrol. 104 (2), 142-162.

https://doi.org/10.1007/BF00306439

Sowerby, J. R., and Keppler, H., 1999. Water speciation in rhyolitic melt determined by

in-situ infrared spectroscopy. Am. Mineral. 84 (11-12), 1843-1849. https://doi.org/10.

2138/am-1999-11-1211

Sowerby, J. R., and Keppler, H., 2000. Water speciation in rhyolitic melt determined by

in-situ infrared spectroscopy. Am. Mineral. 85 (5-6), 880 (erratum).

84

Sparks, R. S. J., 1978. The dynamics of bubble formation and growth in magmas: A

review and analysis. J. Volcanol. Geotherm. Res. 3 (1-2), 1-37. https://doi.org/10.1016/

0377-0273(78)90002-1

Stalder, R., Ulmer, P., Thompson, A. B., and G´’unther, D., 2000. Experimental approach to

constrain second critical end points in fluid/silicate systems: Near-solidus fluids and melts in the

system albite-H2 O. Am. Mineral. 85 (1), 68-77. https://doi.org/10.2138/am-2000-0108

Stolper, E., 1982a. Water in silicate glasses: an infrared spectroscopic study. Contrib.

Mineral. Petrol. 81 (1), 1-7. https://doi.org/10.1007/BF00371154

Stolper, E., 1982b. The speciation of water in silicate melts. Geochim. Cosmochim. Acta

46 (12), 2609-2620. https://doi.org/10.1016/0016-7037(82)90381-7

Sugawara, T., 2005. Thermodynamic properties of magmatic liquid: Review and future

directions (in Japanese). Bull. Volcanol, Soc. Japan 50 (2), 103-142.

https://doi.org/10.18940/kazan.50.2_103

Sugawara, T., and Akaogi, M., 2003. Heats of mixing of silicate liquid in the systems

diopside-anorthite-akermanite, diopside-anorthite-forsterite, and diopside-silica. Am. Mineral.

88 (7), 1020-1024. https://doi.org/10.2138/am-2003-0710

Sun, K. H., 1947. Fundamental condition of glass formation. J. Am. Ceram. Soc. 30 (9),

277-281. https://doi.org/10.1111/j.1151-2916.1947.tb19654.x

Takata, M., Acocella, J., Tomozawa, M., and Watson, E. B., 1981. Effect of water content

on the electrical conductivity of Na2 O-3SiO2 glass. J. Am. Ceram. Soc. 64 (12), 719-724.

https://doi.org/10.1111/j.1151-2916.1981.tb15894.x

Tanaka, R., and Hashimoto, T., 2013. Transition in eruption style during the 2011 eruption

of Shinmoe-dake, in the Kirishima volcanic group: Implications from a steady conduit flow

model. Earth Planets Space 65 (6), 645-655. https://doi.org/10.5047/eps.2013.05.002

Taniguchi, H., 2001. Invitation to magma science (in Japanese). Shokabo, Chiyoda, Tokyo,

179 pp.

Toramaru, A., 1989. Vesiculation process and bubble size distributions in ascending magmas

with constant velocities. J. Geophys. Res. Solid Earth 94 (B12), 17523-17542.

https://doi.org/10.1029/JB094iB12p17523

Toramaru, A., 1995. ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る