リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spin-Crossover-Triggered Linkage Isomerization by the Pedal-like Motion of the Azobenzene Ligand in a Neutral Heteroleptic Iron(III) Complex」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spin-Crossover-Triggered Linkage Isomerization by the Pedal-like Motion of the Azobenzene Ligand in a Neutral Heteroleptic Iron(III) Complex

Miyawaki, Atsuhiro Eda, Kazuo Mochida, Tomoyuki Sakurai, Takahiro Ohta, Hitoshi Nakajima, Takahito Takahashi, Kazuyuki 神戸大学

2021.09.06

概要

The temperature dependence of magnetic susceptibility of [FeIII(azp)(qsal-Me)]·0.5CH3OH [Hqsal-Me = 5-methyl-N-(8-quinoyl)salicylaldimine, H2azp = 2,2′-azobisphenol] demonstrated that the spin-crossover (SCO) transition behavior changed from an abrupt transition to consecutive gradual conversions, and moreover, the initial abrupt transition was recovered, keeping the complex at room temperature. The variable-temperature crystal structures revealed that an SCO-triggered linkage isomerization of the azobenzene ligand from one orientation to two disordered orientations and the relaxation from the disordered orientations to the original orientation occurred. The high-spin to low-spin relaxation kinetics and theoretical calculation indicate that the pedal-like motion of the azobenzene ligand can be on in the high-spin state whereas off in the low-spin state.

この論文で使われている画像

参考文献

Figure 5. Energy diagram of the [Fe(azp)(qsal-Me)] molecules optimized at the B3LYP* functional in a gas phase at

298 K. The Gibbs energy of the LS isomer is set to zero.

In summary, we demonstrated the synthesis, crystal

structures, physical measurements, and theoretical calculations of the methyl-substituted neutral heteroleptic

Fe(III) complex 2 from the azobenzene ligand. The ligand orientational disorder, the HS-to-LS relaxation, and

computed TS energies revealed that the SCO transition

from the LS to HS state would be coupled to the pedallike motion of the azobenzene ligand, resulting in linkage isomerization in complex 2. This SCO-induced linkage isomerization indicates that the spin-state of a transition metal complex can switch not only the molecular

motion of a coordinated ligand but also the bonding and

dissociation of a coordination bond. The former leads to

the possibility of the on-off switch of motion for

molecular machines and actuators, the latter may lead to

the elucidation of a chemical reaction mechanism involved in metal complex catalysts and bioinorganic molecular functional systems having potential SCO metal

centers. Further investigations from the point of view of

intermolecular interactions are needed to clarify the

mechanisms of the unidirectional relaxation to the OR

isomer and the change in SCO transition.

(1) Yamada, M.; Kondo, M.; Mamiya, J.; Yu, Y.; Kinoshita, M.; Barrett, C. J.; Ikeda, T. Photomobile Polymer Materials: Towards LightDriven Plastic Motors. Angew. Chemie Int. Ed. 2008, 47, 4986–4988.

(2) Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches,

and Actuators. Chem. Rev. 2014, 114, 12174–12277.

(3) Spin Crossover in Transition Metal Compounds I−III; Gütlich, P.;

Goodwin, H. A., Eds.; Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2004.

(4) Spin-Crossover Materials; Halcrow, M. A., Ed.; John Wiley &

Sons, Ltd.: Oxford, UK, 2013.

(5) Takahashi, K.; Cui, H.-B.; Okano, Y.; Kobayashi, H.; Einaga, Y.;

Sato, O. Electrical Conductivity Modulation Coupled to a HighSpin−Low-Spin Conversion in the Molecular System [FeIII

(qsal)2][Ni(dmit)2]3·CH3CN·H2O. Inorg. Chem. 2006, 45, 5739–5741.

(6) Takahashi, K.; Cui, H.-B.; Okano, Y.; Kobayashi, H.; Mori, H.;

Tajima, H.; Einaga, Y.; Sato, O. Evidence of the Chemical Uniaxial

Strain Effect on Electrical Conductivity in the Spin-Crossover Conducting Molecular System: [FeIII(qnal)2][Pd(dmit)2]5·Acetone. J. Am.

Chem. Soc. 2008, 130, 6688–6689.

(7) Phan, H.; Benjamin, S. M.; Steven, E.; Brooks, J. S.; Shatruk, M.

Photomagnetic Response in Highly Conductive Iron(II) SpinCrossover Complexes with TCNQ Radicals. Angew. Chem. Int. Ed.

2015, 54, 823–827.

(8) Ishikawa, R.; Ueno, S.; Nifuku, S.; Horii, Y.; Iguchi, H.; Miyazaki,

Y.; Nakano, M.; Hayami, S.; Kumagai, S.; Katoh, K.; et al. Simultaneous Spin-Crossover Transition and Conductivity Switching in a

Dinuclear Iron(II) Coordination Compound Based on 7,7′,8,8′Tetracyano-p-Quinodimethane. Chem. - A Eur. J. 2020, 26, 1278–

1285.

(9) Nihei, M.; Tahira, H.; Takahashi, N.; Otake, Y.; Yamamura, Y.;

Saito, K.; Oshio, H. Multiple Bistability and Tristability with Dual

Spin-State Conversions in [Fe(dpp)2][Ni(mnt)2]2·MeNO2. J. Am.

Chem. Soc. 2010, 132, 3553–3560.

(10) Ohkoshi, S.; Imoto, K.; Tsunobuchi, Y.; Takano, S.; Tokoro, H.

Light-Induced Spin-Crossover Magnet. Nat. Chem. 2011, 3, 564–569.

(11) Ababei, R.; Pichon, C.; Roubeau, O.; Li, Y.-G.; Bréfuel, N.;

Buisson, L.; Guionneau, P.; Mathonière, C.; Clérac, R. Rational Design of a Photomagnetic Chain: Bridging Single-Molecule Magnets

with a Spin-Crossover Complex. J. Am. Chem. Soc. 2013, 135,

14840–14853.

(12) Fukuroi, K.; Takahashi, K.; Mochida, T.; Sakurai, T.; Ohta, H.;

Yamamoto, T.; Einaga, Y.; Mori, H. Synergistic Spin Transition between Spin Crossover and Spin-Peierls-like Singlet Formation in the

Halogen-Bonded

Molecular

Hybrid

System:

[Fe(Iqsal)2][Ni(dmit)2]⋅CH3CN⋅H2O. Angew. Chem. Int. Ed. 2014, 53,

1983–1986.

(13) Jornet-Mollá, V.; Duan, Y.; Giménez-Saiz, C.; Tang, Y.-Y. Y.;

Li, P.-F. F.; Romero, F. M.; Xiong, R.-G. G. A Ferroelectric Iron(II)

Spin Crossover Material. Angew. Chem. Int. Ed. 2017, 56, 14052–

14056.

(14) Akiyoshi, R.; Hirota, Y.; Kosumi, D.; Tsutsumi, M.; Nakamura,

M.; Lindoy, L. F.; Hayami, S. Ferroelectric Metallomesogens Composed of Achiral Spin Crossover Molecules. Chem. Sci. 2019, 10,

5843–5848.

(15) Ohkoshi, S. I.; Takano, S.; Imoto, K.; Yoshikiyo, M.; Namai, A.;

Tokoro, H. 90-Degree Optical Switching of Output Second-Harmonic

Light in Chiral Photomagnet. Nat. Photonics 2014, 8, 65–71.

(16) Lochenie, C.; Schötz, K.; Panzer, F.; Kurz, H.; Maier, B.; Puchtler, F.; Agarwal, S.; Köhler, A.; Weber, B. Spin-Crossover Iron(II)

Coordination Polymer with Fluorescent Properties: Correlation between Emission Properties and Spin State. J. Am. Chem. Soc. 2018,

140, 700–709.

(17) Wang, C.-F.; Yang, G.-Y.; Yao, Z.-S.; Tao, J. Monitoring the

Spin States of Ferrous Ions by Fluorescence Spectroscopy in SpinCrossover-Fluorescent Hybrid Materials. Chem. - A Eur. J. 2018, 24,

3218–3224.

(18) Takahashi, K.; Kawamukai, K.; Okai, M.; Mochida, T.; Sakurai,

T.; Ohta, H.; Yamamoto, T.; Einaga, Y.; Shiota, Y.; Yoshizawa, K. A

New Family of Anionic FeIII Spin Crossover Complexes Featuring a

Weak-Field N2O4 Coordination Octahedron. Chem. Eur. J. 2016, 22,

1253–1257.

(19) Murata, S.; Takahashi, K.; Sakurai, T.; Ohta, H.; Yamamoto, T.;

Einaga, Y.; Shiota, Y.; Yoshizawa, K. The Role of Coulomb Interactions for Spin Crossover Behaviors and Crystal Structural Transformation in Novel Anionic Fe(III) Complexes from a π-Extended ONO

Ligand. Crystals 2016, 6, 49.

(20) Murata, S.; Takahashi, K.; Mochida, T.; Sakurai, T.; Ohta, H.;

Yamamoto, T.; Einaga, Y. Cooperative Spin-Crossover Transition

from Three-Dimensional Purely π-Stacking Interactions in a Neutral

Heteroleptic Azobisphenolate FeIII Complex with a N3O3 Coordination Sphere. Dalton Trans. 2017, 46, 5786–5789.

(21) Miyawaki, A.; Mochida, T.; Sakurai, T.; Ohta, H.; Takahashi, K.

The Impact of the Next-Nearest Neighbor Dispersion Interactions on

Spin Crossover Transition Enthalpy Evidenced by Experimental and

Computational Analyses of Neutral π-Extended Heteroleptic Fe(III)

Complexes. Inorg. Chem. 2020, 59, 12295–12303.

(22) Dutta, S.; Basu, P.; Chakravorty, A. Mononuclear Manganese(IV) in Tridentate ONO Coordination. Synthesis, Structure, and

Redox Regulation via Oxygen Donor Variation. Inorg. Chem. 1991,

30, 4031–4037.

(23) Moré, R.; Busse, G.; Hallmann, J.; Paulmann, C.; Scholz, M.;

Techert, S. Photodimerization of Crystalline 9-Anthracenecarboxylic

Acid: A Nontopotactic Autocatalytic Transformation. J. Phys. Chem.

C 2010, 114, 4142–4148.

(24) Zöllner, H.; Woike, T.; Krasser, W.; Haussühl, S. Thermal Decay

of Laser-Induced Long Living Metastable Electronic States in

Na2[Fe(CN)5NO]·2H2O Single Crystals. Z. für Krist. 1989, 188, 139–

153.

(25) Schaniel, D.; Woike, T.; Tsankov, L.; Imlau, M. Evidence of

Four Light-Induced Metastable States in Iron-Nitrosyl Complexes.

Thermochim. Acta 2005, 429, 19–23.

(26) Galli, S.; Mercandelli, P.; Sironi, A. Molecular Mechanics in

Crystalline Media: The Case of (E)-Stilbenes. J. Am. Chem. Soc. 1999,

121, 3767–3772.

(27) Harada, J.; Ogawa, K. Pedal Motion in Crystals. Chem. Soc. Rev.

2009, 38, 2244–2252.

(28) Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani,

G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.;

Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci,

B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.;

Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.;

Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.

G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.;

Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery,

J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.;

Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J.

C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.;

Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma,

K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford

CT, 2016.

(29) Salomon, O.; Reiher, M.; Hess, B. A. Assertion and Validation

of the Performance of the B3LYP⋆ Functional for the First Transition

Metal Row and the G2 Test Set. J. Chem. Phys. 2002, 117, 4729–

4737.

(30) Peng, C.; Schlegel, H. B. Combining Synchronous Transit and

Quasi-Newton Methods for Finding Transition States. Israel J. Chem.

1993, 33, 449–454.

(31) Henkelman, G.; Jonsson, H. Improved tangent estimate in the

nudged elastic band method for finding minimum energy paths and

saddle points. J. Chem. Phys. 2000, 113, 9978−9985.

(32) Nakajima, T.; Katouda, M.; Kamiya, M.; Nakatsuka, Y.

NTChem: A high-performance software package for quantum molecular simulation. Int. J. Quant. Chem. 2015, 115, 349−359.

(33) Fukui, K. The Path of Chemical Reactions – The IRC Approach.

Acc. Chem. Res. 1981, 14, 363–368.

(34) Rodríguez-Velamazán, J. A.; González, M. A.; Real, J. A.; Castro, M.; Muñoz, M. C.; Gaspar, A. B.; Ohtani, R.; Ohba, M.; Yoneda,

K.; Hijikata, Y.; et al. A Switchable Molecular Rotator: Neutron

Spectroscopy Study on a Polymeric Spin-Crossover Compound. J.

Am. Chem. Soc. 2012, 134, 5083–5089.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る