リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Transcription Factors in Alkaloid Engineering」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Transcription Factors in Alkaloid Engineering

Yamada, Yasuyuki Sato, Fumihiko 京都大学 DOI:10.3390/biom11111719

2021

概要

Plants produce a large variety of low-molecular-weight and specialized secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used in the pharmaceutical industry. Although alkaloid chemistry has been intensively investigated, characterization of alkaloid biosynthesis, including biosynthetic enzyme genes and their regulation, especially the transcription factors involved, has been relatively delayed, since only a limited number of plant species produce these specific types of alkaloids in a tissue/cell-specific or developmental-specific manner. Recent advances in molecular biology technologies, such as RNA sequencing, co-expression analysis of transcripts and metabolites, and functional characterization of genes using recombinant technology and cutting-edge technology for metabolite identification, have enabled a more detailed characterization of alkaloid pathways. Thus, transcriptional regulation of alkaloid biosynthesis by transcription factors, such as basic helix–loop–helix (bHLH), APETALA2/ethylene-responsive factor (AP2/ERF), and WRKY, is well elucidated. In addition, jasmonate signaling, an important cue in alkaloid biosynthesis, and its cascade, interaction of transcription factors, and post-transcriptional regulation are also characterized and show cell/tissue-specific or developmental regulation. Furthermore, current sequencing technology provides more information on the genome structure of alkaloid-producing plants with large and complex genomes, for genome-wide characterization. Based on the latest information, we discuss the application of transcription factors in alkaloid engineering.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

Sato, F. 2.26—Plant Alkaloid Engineering. In Comprehensive Natural Products III; Ben Liu, H.-W., Begley, T.P., Eds.; Elsevier: Oxford,

UK, 2020; pp. 700–755. ISBN 9780081026915.

Yamada, Y.; Sato, F. Transcription Factors in Alkaloid Biosynthesis. Int. Rev. Cell Mol. Biol. 2013, 305, 339–382.

Zhou, M.; Memelink, J. Jasmonate-Responsive Transcription Factors Regulating Plant Secondary Metabolism. Biotechnol. Adv.

2016, 34, 441–449. [CrossRef] [PubMed]

Menke, F.L.; Champion, A.; Kijne, J.W.; Memelink, J. A Novel Jasmonate- and Elicitor-Responsive Element in the Periwinkle

Secondary Metabolite Biosynthetic Gene Str Interacts with a Jasmonate- and Elicitor-Inducible AP2-Domain Transcription Factor,

ORCA2. EMBO J. 1999, 18, 4455–4463. [CrossRef] [PubMed]

Van der Fits, L.; Memelink, J. ORCA3, a Jasmonate-Responsive Transcriptional Regulator of Plant Primary and Secondary

Metabolism. Science 2000, 289, 295–297. [CrossRef]

Paul, P.; Singh, S.K.; Patra, B.; Sui, X.; Pattanaik, S.; Yuan, L. A Differentially Regulated AP2/ERF Transcription Factor Gene

Cluster Acts Downstream of a MAP Kinase Cascade to Modulate Terpenoid Indole Alkaloid Biosynthesis in Catharanthus Roseus.

New Phytol. 2017, 213, 1107–1123. [CrossRef] [PubMed]

Paul, P.; Singh, S.K.; Patra, B.; Liu, X.; Pattanaik, S.; Yuan, L. Mutually Regulated AP2/ERF Gene Clusters Modulate Biosynthesis

of Specialized Metabolites in Plants. Plant Physiol. 2020, 182, 840–856. [CrossRef]

Singh, S.K.; Patra, B.; Paul, P.; Liu, Y.; Pattanaik, S.; Yuan, L. Revisiting the ORCA Gene Cluster That Regulates Terpenoid Indole

Alkaloid Biosynthesis in Catharanthus Roseus. Plant Sci. 2020, 293, 110408. [CrossRef] [PubMed]

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Biomolecules 2021, 11, 1719

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

17 of 21

Pan, Q.; Wang, C.; Xiong, Z.; Wang, H.; Fu, X.; Shen, Q.; Peng, B.; Ma, Y.; Sun, X.; Tang, K. CrERF5, an AP2/ERF Transcription

Factor, Positively Regulates the Biosynthesis of Bisindole Alkaloids and Their Precursors in Catharanthus Roseus. Front. Plant Sci.

2019, 10, 931. [CrossRef] [PubMed]

Liu, J.; Gao, F.; Ren, J.; Lu, X.; Ren, G.; Wang, R. A Novel AP2/ERF Transcription Factor CR1 Regulates the Accumulation of

Vindoline and Serpentine in Catharanthus Roseus. Front. Plant Sci. 2017, 8, 2082. [CrossRef] [PubMed]

Shoji, T.; Kajikawa, M.; Hashimoto, T. Clustered Transcription Factor Genes Regulate Nicotine Biosynthesis in Tobacco. Plant Cell

2010, 22, 3390–3409. [CrossRef]

De Sutter, V.; Vanderhaeghen, R.; Tilleman, S.; Lammertyn, F.; Vanhoutte, I.; Karimi, M.; Inzé, D.; Goossens, A.; Hilson, P.

Exploration of Jasmonate Signalling via Automated and Standardized Transient Expression Assays in Tobacco Cells. Plant J. 2005,

44, 1065–1076. [CrossRef]

De Boer, K.; Tilleman, S.; Pauwels, L.; Vanden Bossche, R.; De Sutter, V.; Vanderhaeghen, R.; Hilson, P.; Hamill, J.D.; Goossens, A.

APETALA2/ETHYLENE RESPONSE FACTOR and Basic Helix-Loop-Helix Tobacco Transcription Factors Cooperatively Mediate

Jasmonate-Elicited Nicotine Biosynthesis. Plant J. 2011, 66, 1053–1065. [CrossRef] [PubMed]

Sears, M.T.; Zhang, H.; Rushton, P.J.; Wu, M.; Han, S.; Spano, A.J.; Timko, M.P. NtERF32: A Non-NIC2 Locus AP2/ERF

Transcription Factor Required in Jasmonate-Inducible Nicotine Biosynthesis in Tobacco. Plant Mol. Biol. 2014, 84, 49–66.

[CrossRef] [PubMed]

Cárdenas, P.D.; Sonawane, P.D.; Pollier, J.; Vanden Bossche, R.; Dewangan, V.; Weithorn, E.; Tal, L.; Meir, S.; Rogachev, I.; Malitsky,

S.; et al. GAME9 Regulates the Biosynthesis of Steroidal Alkaloids and Upstream Isoprenoids in the Plant Mevalonate Pathway.

Nat. Commun. 2016, 7, 10654. [CrossRef]

Thagun, C.; Imanishi, S.; Kudo, T.; Nakabayashi, R.; Ohyama, K.; Mori, T.; Kawamoto, K.; Nakamura, Y.; Katayama, M.; Nonaka,

S.; et al. Jasmonate-Responsive ERF Transcription Factors Regulate Steroidal Glycoalkaloid Biosynthesis in Tomato. Plant Cell

Physiol. 2016, 57, 961–975. [CrossRef] [PubMed]

Udomsom, N.; Rai, A.; Suzuki, H.; Okuyama, J.; Imai, R.; Mori, T.; Nakabayashi, R.; Saito, K.; Yamazaki, M. Function of AP2/ERF

Transcription Factors Involved in the Regulation of Specialized Metabolism in Ophiorrhiza Pumila Revealed by Transcriptomics

and Metabolomics. Front. Plant Sci. 2016, 7, 1861. [CrossRef] [PubMed]

Yamada, Y.; Nishida, S.; Shitan, N.; Sato, F. Genome-Wide Identification of AP2/ERF Transcription Factor-Encoding Genes in

California Poppy (Eschscholzia Californica) and Their Expression Profiles in Response to Methyl Jasmonate. Sci. Rep. 2020, 10,

18066. [CrossRef]

Kato, N.; Dubouzet, E.; Kokabu, Y.; Yoshida, S.; Taniguchi, Y.; Dubouzet, J.G.; Yazaki, K.; Sato, F. Identification of a WRKY

Protein as a Transcriptional Regulator of Benzylisoquinoline Alkaloid Biosynthesis in Coptis Japonica. Plant Cell Physiol. 2007,

48, 8–18. [CrossRef]

Suttipanta, N.; Pattanaik, S.; Kulshrestha, M.; Patra, B.; Singh, S.K.; Yuan, L. The Transcription Factor CrWRKY1 Positively

Regulates the Terpenoid Indole Alkaloid Biosynthesis in Catharanthus Roseus. Plant Physiol. 2011, 157, 2081–2093. [CrossRef]

Mishra, S.; Triptahi, V.; Singh, S.; Phukan, U.J.; Gupta, M.M.; Shanker, K.; Shukla, R.K. Wound Induced Tanscriptional Regulation

of Benzylisoquinoline Pathway and Characterization of Wound Inducible PsWRKY Transcription Factor from Papaver Somniferum.

PLoS ONE 2013, 8, e52784.

Xu, M.; Wu, C.; Zhao, L.; Wang, Y.; Wang, C.; Zhou, W.; Ming, Y.; Kai, G. WRKY Transcription Factor OpWRKY1 Acts as

a Negative Regulator of Camptothecin Biosynthesis in Ophiorrhiza Pumila Hairy Roots. Plant Cell Tissue Organ Cult. 2020,

142, 69–78. [CrossRef]

Hao, X.; Xie, C.; Ruan, Q.; Zhang, X.; Wu, C.; Han, B.; Qian, J.; Zhou, W.; Nützmann, H.-W.; Kai, G. The Transcription Factor

OpWRKY2 Positively Regulates the Biosynthesis of the Anticancer Drug Camptothecin in Ophiorrhiza Pumila. Hortic. Res. 2021,

8, 7. [CrossRef] [PubMed]

Wang, C.; Wu, C.; Wang, Y.; Xie, C.; Shi, M.; Nile, S.; Zhou, Z.; Kai, G. Transcription Factor OpWRKY3 Is Involved in the

Development and Biosynthesis of Camptothecin and Its Precursors in Ophiorrhiza Pumila Hairy Roots. Int. J. Mol. Sci. 2019,

20, 3996. [CrossRef]

Todd, A.T.; Liu, E.; Polvi, S.L.; Pammett, R.T.; Page, J.E. A Functional Genomics Screen Identifies Diverse Transcription Factors

That Regulate Alkaloid Biosynthesis in Nicotiana Benthamiana. Plant J. 2010, 62, 589–600. [CrossRef]

Zhang, H.-B.; Bokowiec, M.T.; Rushton, P.J.; Han, S.-C.; Timko, M.P. Tobacco Transcription Factors NtMYC2a and NtMYC2b

Form Nuclear Complexes with the NtJAZ1 Repressor and Regulate Multiple Jasmonate-Inducible Steps in Nicotine Biosynthesis.

Mol. Plant 2012, 5, 73–84. [CrossRef] [PubMed]

Sui, X.; He, X.; Song, Z.; Gao, Y.; Zhao, L.; Jiao, F. The Gene NtMYC2a Acts as a “Master Switch” in the Regulation of JA-induced

Nicotine Accumulation in Tobacco. Plant 2021, 23, 317–326. [CrossRef] [PubMed]

Shoji, T.; Hashimoto, T. Tobacco MYC2 Regulates Jasmonate-Inducible Nicotine Biosynthesis Genes Directly and by Way of the

NIC2-Locus ERF Genes. Plant Cell Physiol. 2011, 52, 1117–1130. [CrossRef]

Chatel, G.; Montiel, G.; Pré, M.; Memelink, J.; Thiersault, M.; Saint-Pierre, B.; Doireau, P.; Gantet, P. CrMYC1, a Catharanthus

Roseus Elicitor-and Jasmonate-Responsive bHLH Transcription Factor That Binds the G-Box Element of the Strictosidine Synthase

Gene Promoter. J. Exp. Bot. 2003, 54, 2587–2588. [CrossRef]

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Biomolecules 2021, 11, 1719

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

18 of 21

Zhang, H.; Hedhili, S.; Montiel, G.; Zhang, Y.; Chatel, G.; Pré, M.; Gantet, P.; Memelink, J. The Basic Helix-Loop-Helix Transcription

Factor CrMYC2 Controls the Jasmonate-Responsive Expression of the ORCA Genes That Regulate Alkaloid Biosynthesis in

Catharanthus Roseus. Plant J. 2011, 67, 61–71. [CrossRef]

Van Moerkercke, A.; Steensma, P.; Schweizer, F.; Pollier, J.; Gariboldi, I.; Payne, R.; Vanden Bossche, R.; Miettinen, K.; Espoz, J.;

Purnama, P.C.; et al. The bHLH Transcription Factor BIS1 Controls the Iridoid Branch of the Monoterpenoid Indole Alkaloid

Pathway in Catharanthus Roseus. Proc. Natl. Acad. Sci. USA 2015, 112, 8130–8135. [CrossRef] [PubMed]

Van Moerkercke, A.; Steensma, P.; Gariboldi, I.; Espoz, J.; Purnama, P.C.; Schweizer, F.; Miettinen, K.; Vanden Bossche, R.; De

Clercq, R.; Memelink, J.; et al. The Basic Helix-Loop-Helix Transcription Factor BIS2 Is Essential for Monoterpenoid Indole

Alkaloid Production in the Medicinal Plant Catharanthus Roseus. Plant J. 2016, 88, 3–12. [CrossRef]

Singh, S.K.; Patra, B.; Paul, P.; Liu, Y.; Pattanaik, S.; Yuan, L. BHLH IRIDOID SYNTHESIS 3 Is a Member of a bHLH Gene Cluster

Regulating Terpenoid Indole Alkaloid Biosynthesis in Catharanthus Roseus. Plant Direct 2021, 5, e00305. [CrossRef] [PubMed]

Yamada, Y.; Kokabu, Y.; Chaki, K.; Yoshimoto, T.; Ohgaki, M.; Yoshida, S.; Kato, N.; Koyama, T.; Sato, F. Isoquinoline Alkaloid Biosynthesis Is Regulated by a Unique bHLH-Type Transcription Factor in Coptis Japonica. Plant Cell Physiol. 2011,

52, 1131–1141. [CrossRef]

Yamada, Y.; Motomura, Y.; Sato, F. CjbHLH1 Homologs Regulate Sanguinarine Biosynthesis in Eschscholzia Californica Cells. Plant

Cell Physiol. 2015, 56, 1019–1030. [CrossRef] [PubMed]

Patra, B.; Pattanaik, S.; Schluttenhofer, C.; Yuan, L. A Network of Jasmonate-Responsive bHLH Factors Modulate Monoterpenoid

Indole Alkaloid Biosynthesis in Catharanthus Roseus. New Phytol. 2018, 217, 1566–1581. [CrossRef]

Van der Fits, L.; Zhang, H.; Menke, F.L.H.; Deneka, M.; Memelink, J. A Catharanthus Roseus BPF-1 Homologue Interacts with an

Elicitor-Responsive Region of the Secondary Metabolite Biosynthetic Gene Str and Is Induced by Elicitor via a JA-Independent

Signal Transduction Pathway. Plant Mol. Biol. 2000, 44, 675–685. [CrossRef] [PubMed]

Li, C.Y.; Leopold, A.L.; Sander, G.W.; Shanks, J.V.; Zhao, L.; Gibson, S.I. CrBPF1 Overexpression Alters Transcript Levels of

Terpenoid Indole Alkaloid Biosynthetic and Regulatory Genes. Front. Plant Sci. 2015, 6, 818. [CrossRef]

Rohani, E.R.; Chiba, M.; Kawaharada, M.; Asano, T.; Oshima, Y.; Mitsuda, N.; Ohme-Takagi, M.; Fukushima, A.; Rai, A.;

Saito, K.; et al. An MYB Transcription Factor Regulating Specialized Metabolisms in Ophiorrhiza Pumila. Plant Biotechnol. 2016,

33, 1–9. [CrossRef]

Sibéril, Y.; Benhamron, S.; Memelink, J.; Giglioli-Guivarc’h, N.; Thiersault, M.; Boisson, B.; Doireau, P.; Gantet, P. Catharanthus

Roseus G-Box Binding Factors 1 and 2 Act as Repressors of Strictosidine Synthase Gene Expression in Cell Cultures. Plant Mol.

Biol. 2001, 45, 477–488. [CrossRef]

Pauw, B.; Hilliou, F.A.O.; Martin, V.S.; Chatel, G.; de Wolf, C.J.F.; Champion, A.; Pré, M.; van Duijn, B.; Kijne, J.W.; van der Fits, L.;

et al. Zinc Finger Proteins Act as Transcriptional Repressors of Alkaloid Biosynthesis Genes in Catharanthus Roseus. J. Biol. Chem.

2004, 279, 52940–52948. [CrossRef]

Liu, Y.; Patra, B.; Pattanaik, S.; Wang, Y.; Yuan, L. GATA and Phytochrome Interacting Factor Transcription Factors Regulate

Light-Induced Vindoline Biosynthesis in Catharanthus Roseus. Plant Physiol. 2019, 180, 1336–1350. [CrossRef]

Vom Endt, D.; Soares e Silva, M.; Kijne, J.W.; Pasquali, G.; Memelink, J. Identification of a Bipartite Jasmonate-Responsive Promoter

Element in the Catharanthus Roseus ORCA3 Transcription Factor Gene That Interacts Specifically with AT-Hook DNA-Binding

Proteins. Plant Physiol. 2007, 144, 1680–1689. [CrossRef] [PubMed]

Nakano, T.; Suzuki, K.; Fujimura, T.; Shinshi, H. Genome-Wide Analysis of the ERF Gene Family in Arabidopsis and Rice. Plant

Physiol. 2006, 140, 411–432. [CrossRef] [PubMed]

Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AP2/ERF Family Transcription Factors in Plant Abiotic Stress Responses.

Biochim. Biophys. Acta 2012, 1819, 86–96. [CrossRef] [PubMed]

Lu, X.; Tang, K.; Li, P. Plant Metabolic Engineering Strategies for the Production of Pharmaceutical Terpenoids. Front. Plant Sci.

2016, 7, 1647. [CrossRef]

Zhang, Y.; Ji, A.; Xu, Z.; Luo, H.; Song, J. The AP2/ERF Transcription Factor SmERF128 Positively Regulates Diterpenoid

Biosynthesis in Salvia Miltiorrhiza. Plant Mol. Biol. 2019, 100, 83–93. [CrossRef]

Shoji, T.; Yuan, L. ERF Gene Clusters: Working Together to Regulate Metabolism. Trends Plant Sci. 2021, 26, 23–32. [CrossRef]

[PubMed]

Eulgem, T.; Somssich, I.E. Networks of WRKY Transcription Factors in Defense Signaling. Curr. Opin. Plant Biol. 2007, 10, 366–371.

[CrossRef] [PubMed]

Rushton, P.J.; Somssich, I.E.; Ringler, P.; Shen, Q.J. WRKY Transcription Factors. Trends Plant Sci. 2010, 15, 247–258. [CrossRef]

Eulgem, T.; Rushton, P.J.; Robatzek, S.; Somssich, I.E. The WRKY Superfamily of Plant Transcription Factors. Trends Plant Sci.

2000, 5, 199–206. [CrossRef]

Yamasaki, K.; Kigawa, T.; Watanabe, S.; Inoue, M.; Yamasaki, T.; Seki, M.; Shinozaki, K.; Yokoyama, S. Structural Basis for

Sequence-Specific DNA Recognition by an Arabidopsis WRKY Transcription Factor. J. Biol. Chem. 2012, 287, 7683–7691. [CrossRef]

[PubMed]

Yamasaki, K.; Kigawa, T.; Seki, M.; Shinozaki, K.; Yokoyama, S. DNA-Binding Domains of Plant-Specific Transcription Factors:

Structure, Function, and Evolution. Trends Plant Sci. 2013, 18, 267–276. [CrossRef] [PubMed]

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Biomolecules 2021, 11, 1719

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

19 of 21

Ma, D.; Pu, G.; Lei, C.; Ma, L.; Wang, H.; Guo, Y.; Chen, J.; Du, Z.; Wang, H.; Li, G.; et al. Isolation and Characterization of

AaWRKY1, an Artemisia Annua Transcription Factor That Regulates the Amorpha-4, 11-Diene Synthase Gene, a Key Gene of

Artemisinin Biosynthesis. Plant Cell Physiol. 2009, 50, 2146–2161. [CrossRef] [PubMed]

Atchley, W.R.; Fitch, W.M. A Natural Classification of the Basic Helix–loop–helix Class of Transcription Factors. Proc. Natl. Acad.

Sci. USA 1997, 94, 5172–5176. [CrossRef] [PubMed]

Stevens, J.D.; Roalson, E.H.; Skinner, M.K. Phylogenetic and Expression Analysis of the Basic Helix-Loop-Helix Transcription

Factor Gene Family: Genomic Approach to Cellular Differentiation. Differentiation 2008, 76, 1006–1022. [CrossRef]

Heim, M.A.; Jakoby, M.; Werber, M.; Martin, C.; Weisshaar, B.; Bailey, P.C. The Basic Helix–Loop–Helix Transcription Factor

Family in Plants: A Genome-Wide Study of Protein Structure and Functional Diversity. Mol. Biol. Evol. 2003, 20, 735–747.

[CrossRef]

Carretero-Paulet, L.; Galstyan, A.; Roig-Villanova, I.; Martínez-García, J.F.; Bilbao-Castro, J.R.; Robertson, D.L. Genome-Wide

Classification and Evolutionary Analysis of the bHLH Family of Transcription Factors in Arabidopsis, Poplar, Rice, Moss, and

Algae. Plant Physiol. 2010, 153, 1398–1412. [CrossRef]

Buck, M.J.; Atchley, W.R. Phylogenetic Analysis of Plant Basic Helix-Loop-Helix Proteins. J. Mol. Evol. 2003, 56, 742–750.

[CrossRef]

Ludwig, S.R.; Habera, L.F. Lc, a Member of the Maize R Gene Family Responsible for Tissue-Specific Anthocyanin Production,

Encodes a Protein Similar to Transcriptional Activators and Contains the Myc-Homology Region. Proc. Natl. Acad. Sci. USA 1989,

86, 7092–7096. [CrossRef]

Koes, R.; Verweij, W.; Quattrocchio, F. Flavonoids: A Colorful Model for the Regulation and Evolution of Biochemical Pathways.

Trends Plant Sci. 2005, 10, 236–242. [CrossRef]

Goossens, J.; Mertens, J.; Goossens, A. Role and Functioning of bHLH Transcription Factors in Jasmonate Signalling. J. Exp. Bot.

2017, 68, 1333–1347. [CrossRef]

Lorenzo, O.; Chico, J.M.; Sánchez-Serrano, J.J.; Solano, R. JASMONATE-INSENSITIVE1 Encodes a MYC Transcription Factor

Essential to Discriminate between Different Jasmonate-Regulated Defense Responses in Arabidopsis. Plant Cell 2004, 16, 1938–1950.

[CrossRef]

Dombrecht, B.; Xue, G.P.; Sprague, S.J.; Kirkegaard, J.A.; Ross, J.J.; Reid, J.B.; Fitt, G.P.; Sewelam, N.; Schenk, P.M.; Manners, J.M.;

et al. MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis. Plant Cell 2007, 19, 2225–2245.

[CrossRef]

Chini, A.; Fonseca, S.; Fernández, G.; Adie, B.; Chico, J.M.; Lorenzo, O.; García-Casado, G.; López-Vidriero, I.; Lozano, F.M.; Ponce,

M.R.; et al. The JAZ Family of Repressors Is the Missing Link in Jasmonate Signalling. Nature 2007, 448, 666–671. [CrossRef]

[PubMed]

Thines, B.; Katsir, L.; Melotto, M.; Niu, Y.; Mandaokar, A.; Liu, G.; Nomura, K.; He, S.Y.; Howe, G.A.; Browse, J. JAZ Repressor

Proteins Are Targets of the SCF(COI1) Complex during Jasmonate Signalling. Nature 2007, 448, 661–665. [CrossRef] [PubMed]

Zhou, Y.; Sun, W.; Chen, J.; Tan, H.; Xiao, Y.; Li, Q.; Ji, Q.; Gao, S.; Chen, L.; Chen, S.; et al. SmMYC2a and SmMYC2b Played

Similar but Irreplaceable Roles in Regulating the Biosynthesis of Tanshinones and Phenolic Acids in Salvia Miltiorrhiza. Sci. Rep.

2016, 6, 22852. [CrossRef] [PubMed]

Shen, Q.; Lu, X.; Yan, T.; Fu, X.; Lv, Z.; Zhang, F.; Pan, Q.; Wang, G.; Sun, X.; Tang, K. The Jasmonate-Responsive AaMYC2

Transcription Factor Positively Regulates Artemisinin Biosynthesis in Artemisia Annua. New Phytol. 2016, 210, 1269–1281.

[CrossRef] [PubMed]

Yamada, Y.; Koyama, T.; Sato, F. Basic Helix-Loop-Helix Transcription Factors and Regulation of Alkaloid Biosynthesis. Plant

Signal. Behav. 2011, 6, 1627–1630. [CrossRef]

Mertens, J.; Pollier, J.; Vanden Bossche, R.; Lopez-Vidriero, I.; Franco-Zorrilla, J.M.; Goossens, A. The bHLH Transcription Factors

TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago Truncatula. Plant Physiol. 2016, 170, 194–210. [CrossRef]

[PubMed]

Tamura, K.; Yoshida, K.; Hiraoka, Y.; Sakaguchi, D.; Chikugo, A.; Mochida, K.; Kojoma, M.; Mitsuda, N.; Saito, K.; Muranaka,

T.; et al. The Basic Helix–Loop–Helix Transcription Factor GubHLH3 Positively Regulates Soyasaponin Biosynthetic Genes in

Glycyrrhiza Uralensis. Plant Cell Physiol. 2018, 59, 783–796. [CrossRef]

Frerigmann, H.; Glawischnig, E.; Gigolashvili, T. The Role of MYB34, MYB51 and MYB122 in the Regulation of Camalexin

Biosynthesis in Arabidopsis Thaliana. Front. Plant Sci. 2015, 6, 654. [CrossRef] [PubMed]

Xu, W.; Dubos, C.; Lepiniec, L. Transcriptional Control of Flavonoid Biosynthesis by MYB–bHLH–WDR Complexes. Trends Plant

Sci. 2015, 20, 176–185. [CrossRef] [PubMed]

Grotewold, E. The Genetics and Biochemistry of Floral Pigments. Annu. Rev. Plant Biol. 2006, 57, 761–780. [CrossRef] [PubMed]

Teng, S.; Keurentjes, J.; Bentsink, L.; Koornneef, M.; Smeekens, S. Sucrose-Specific Induction of Anthocyanin Biosynthesis in

Arabidopsis Requires the MYB75/PAP1 Gene. Plant Physiol. 2005, 139, 1840–1852. [CrossRef]

Loreti, E.; Povero, G.; Novi, G.; Solfanelli, C.; Alpi, A.; Perata, P. Gibberellins, Jasmonate and Abscisic Acid Modulate the

Sucrose-Induced Expression of Anthocyanin Biosynthetic Genes in Arabidopsis. New Phytol. 2008, 179, 1004–1016. [CrossRef]

[PubMed]

Xie, Y.; Tan, H.; Ma, Z.; Huang, J. DELLA Proteins Promote Anthocyanin Biosynthesis via Sequestering MYBL2 and JAZ

Suppressors of the MYB/bHLH/WD40 Complex in Arabidopsis Thaliana. Mol. Plant 2016, 9, 711–721. [CrossRef] [PubMed]

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Biomolecules 2021, 11, 1719

78.

20 of 21

Shan, X.; Zhang, Y.; Peng, W.; Wang, Z.; Xie, D. Molecular Mechanism for Jasmonate-Induction of Anthocyanin Accumulation in

Arabidopsis. J. Exp. Bot. 2009, 60, 3849–3860. [CrossRef] [PubMed]

79. Qi, T.; Song, S.; Ren, Q.; Wu, D.; Huang, H.; Chen, Y.; Fan, M.; Peng, W.; Ren, C.; Xie, D. The Jasmonate-ZIM-Domain

Proteins Interact with the WD-Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation

and Trichome Initiation in Arabidopsis Thaliana. Plant Cell 2011, 23, 1795–1814. [CrossRef] [PubMed]

80. Jeong, S.-W.; Das, P.K.; Jeoung, S.C.; Song, J.-Y.; Lee, H.K.; Kim, Y.-K.; Kim, W.J.; Park, Y.I.; Yoo, S.-D.; Choi, S.-B.; et al. Ethylene

Suppression of Sugar-Induced Anthocyanin Pigmentation in Arabidopsis. Plant Physiol. 2010, 154, 1514–1531. [CrossRef]

81. Meng, L.-S.; Xu, M.-K.; Wan, W.; Yu, F.; Li, C.; Wang, J.-Y.; Wei, Z.-Q.; Lv, M.-J.; Cao, X.-Y.; Li, Z.-Y.; et al. Sucrose Signaling

Regulates Anthocyanin Biosynthesis Through a MAPK Cascade in Arabidopsis Thaliana. Genetics 2018, 210, 607–619. [CrossRef]

82. Brown, B.A.; Cloix, C.; Jiang, G.H.; Kaiserli, E.; Herzyk, P.; Kliebenstein, D.J.; Jenkins, G.I. A UV-B-Specific Signaling Component

Orchestrates Plant UV Protection. Proc. Natl. Acad. Sci. USA 2005, 102, 18225–18230. [CrossRef]

83. Huang, X.; Ouyang, X.; Yang, P.; Lau, O.S. Conversion from CUL4-Based COP1–SPA E3 Apparatus to UVR8–COP1–SPA

Complexes Underlies a Distinct Biochemical Function of COP1 under UV-B. Proc. Natl. Acad. Sci. USA 2013, 110, 16669–16674.

[CrossRef] [PubMed]

84. Shin, J.; Park, E.; Choi, G. PIF3 Regulates Anthocyanin Biosynthesis in an HY5-Dependent Manner with Both Factors Directly

Binding Anthocyanin Biosynthetic Gene Promoters in Arabidopsis. Plant J. 2007, 49, 981–994. [CrossRef]

85. Shin, D.H.; Choi, M.; Kim, K.; Bang, G.; Cho, M.; Choi, S.-B.; Choi, G.; Park, Y.-I. HY5 Regulates Anthocyanin Biosynthesis by

Inducing the Transcriptional Activation of the MYB75/PAP1 Transcription Factor in Arabidopsis. FEBS Lett. 2013, 587, 1543–1547.

[CrossRef]

86. Pichersky, E.; Gershenzon, J. The Formation and Function of Plant Volatiles: Perfumes for Pollinator Attraction and Defense. Curr.

Opin. Plant Biol. 2002, 5, 237–243. [CrossRef]

87. Hong, G.-J.; Xue, X.-Y.; Mao, Y.-B.; Wang, L.-J.; Chen, X.-Y. Arabidopsis MYC2 Interacts with DELLA Proteins in Regulating

Sesquiterpene Synthase Gene Expression. Plant Cell 2012, 24, 2635–2648. [CrossRef] [PubMed]

88. Hansen, B.G.; Halkier, B.A. New Insight into the Biosynthesis and Regulation of Indole Compounds in Arabidopsis Thaliana. Planta

2005, 221, 603–606. [CrossRef] [PubMed]

89. Mao, G.; Meng, X.; Liu, Y.; Zheng, Z.; Chen, Z.; Zhang, S. Phosphorylation of a WRKY Transcription Factor by Two PathogenResponsive MAPKs Drives Phytoalexin Biosynthesis in Arabidopsis. Plant Cell 2011, 23, 1639–1653. [CrossRef] [PubMed]

90. Saga, H.; Ogawa, T.; Kai, K.; Suzuki, H.; Ogata, Y.; Sakurai, N.; Shibata, D.; Ohta, D. Identification and Characterization of

ANAC042, a Transcription Factor Family Gene Involved in the Regulation of Camalexin Biosynthesis in Arabidopsis. Mol. Plant.

Microbe Interact. 2012, 25, 684–696. [CrossRef] [PubMed]

91. Schuhegger, R.; Rauhut, T.; Glawischnig, E. Regulatory Variability of Camalexin Biosynthesis. J. Plant Physiol. 2007, 164, 636–644.

[CrossRef]

92. Baccelli, I.; Lombardi, L.; Luti, S.; Bernardi, R.; Picciarelli, P.; Scala, A.; Pazzagli, L. Cerato-Platanin Induces Resistance in

Arabidopsis Leaves through Stomatal Perception, Overexpression of Salicylic Acid- and Ethylene-Signalling Genes and Camalexin

Biosynthesis. PLoS ONE 2014, 9, e100959. [CrossRef] [PubMed]

93. Goossens, A.; Häkkinen, S.T.; Laakso, I.; Seppänen-Laakso, T.; Biondi, S.; De Sutter, V.; Lammertyn, F.; Nuutila, A.M.; Söderlund,

H.; Zabeau, M.; et al. A Functional Genomics Approach toward the Understanding of Secondary Metabolism in Plant Cells. Proc.

Natl. Acad. Sci. USA 2003, 100, 8595–8600. [CrossRef]

94. Rushton, P.J.; Bokowiec, M.T.; Han, S.; Zhang, H.; Brannock, J.F.; Chen, X.; Laudeman, T.W.; Timko, M.P. Tobacco Transcription

Factors: Novel Insights into Transcriptional Regulation in the Solanaceae. Plant Physiol. 2008, 147, 280–295. [CrossRef] [PubMed]

95. Hayashi, S.; Watanabe, M.; Kobayashi, M.; Tohge, T.; Hashimoto, T.; Shoji, T. Genetic Manipulation of Transcriptional Regulators

Alters Nicotine Biosynthesis in Tobacco. Plant Cell Physiol. 2020, 61, 1041–1053. [CrossRef] [PubMed]

96. Shoji, T.; Hashimoto, T. DNA-Binding and Transcriptional Activation Properties of Tobacco NIC2-Locus ERF189 and Related

Transcription Factors. Plant Biotechnol. 2012, 29, 35–42. [CrossRef]

97. Shoji, T.; Hashimoto, T. Recruitment of a Duplicated Primary Metabolism Gene into the Nicotine Biosynthesis Regulon in Tobacco.

Plant J. 2011, 67, 949–959. [CrossRef] [PubMed]

98. Nakayasu, M.; Shioya, N.; Shikata, M.; Thagun, C.; Abdelkareem, A.; Okabe, Y.; Ariizumi, T.; Arimura, G.-I.; Mizutani, M.; Ezura,

H.; et al. JRE4 Is a Master Transcriptional Regulator of Defense-Related Steroidal Glycoalkaloids in Tomato. Plant J. 2018, 94,

975–990. [CrossRef]

99. Li, C.Y.; Leopold, A.L.; Sander, G.W.; Shanks, J.V.; Zhao, L.; Gibson, S.I. The ORCA2 Transcription Factor Plays a Key Role in

Regulation of the Terpenoid Indole Alkaloid Pathway. BMC Plant Biol. 2013, 13, 155. [CrossRef] [PubMed]

100. Van Der Fits, L.; Memelink, J. The Jasmonate-Inducible AP2/ERF-Domain Transcription Factor ORCA3 Activates Gene Expression

via Interaction with a Jasmonate-Responsive Promoter Element. Plant J. 2001, 25, 43–53. [PubMed]

101. Sui, X.; Singh, S.K.; Patra, B.; Schluttenhofer, C.; Guo, W.; Pattanaik, S.; Yuan, L. Cross-Family Transcription Factor Interaction

between MYC2 and GBFs Modulates Terpenoid Indole Alkaloid Biosynthesis. J. Exp. Bot. 2018, 69, 4267–4281. [CrossRef]

[PubMed]

102. Rizvi, N.F.; Weaver, J.D.; Cram, E.J.; Lee-Parsons, C.W.T. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight

Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus Roseus Hairy Roots. PLoS ONE 2016, 11, e0159712.

[CrossRef] [PubMed]

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Biomolecules 2021, 11, 1719

21 of 21

103. Chen, Y.-Y.; Wang, L.-F.; Dai, L.-J.; Yang, S.-G.; Tian, W.-M. Characterization of HbEREBP1, a Wound-Responsive Transcription

Factor Gene in Laticifers of Hevea Brasiliensis Muell. Arg. Mol. Biol. Rep. 2012, 39, 3713–3719. [CrossRef]

104. Wang, Y.; Zhan, D.-F.; Li, H.-L.; Guo, D.; Zhu, J.-H.; Peng, S.-Q. Transcriptome-Wide Identification and Characterization of MYB

Transcription Factor Genes in the Laticifer Cells of Hevea Brasiliensis. Front. Plant Sci. 2017, 8, 1974. [CrossRef] [PubMed]

105. Singh, A.; Menéndez-Perdomo, I.M.; Facchini, P.J. Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy: An Update.

Phytochem. Rev. 2019, 18, 1457–1482. [CrossRef]

106. Guo, L.; Winzer, T.; Yang, X.; Li, Y.; Ning, Z.; He, Z.; Teodor, R.; Lu, Y.; Bowser, T.A.; Graham, I.A.; et al. The Opium Poppy

Genome and Morphinan Production. Science 2018, 362, 343–347. [CrossRef]

107. Filiault, D.L.; Ballerini, E.S.; Mandáková, T.; Aköz, G.; Derieg, N.J.; Schmutz, J.; Jenkins, J.; Grimwood, J.; Shu, S.; Hayes, R.D.;

et al. The Aquilegia Genome Provides Insight into Adaptive Radiation and Reveals an Extraordinarily Polymorphic Chromosome

with a Unique History. Elife 2018, 7, e36426. [CrossRef] [PubMed]

108. Liu, X.; Liu, Y.; Huang, P.; Ma, Y.; Qing, Z.; Tang, Q.; Cao, H.; Cheng, P.; Zheng, Y.; Yuan, Z.; et al. The Genome of Medicinal Plant

Macleaya Cordata Provides New Insights into Benzylisoquinoline Alkaloids Metabolism. Mol. Plant 2017, 10, 975–989. [CrossRef]

[PubMed]

109. Hori, K.; Yamada, Y.; Purwanto, R.; Minakuchi, Y.; Toyoda, A.; Hirakawa, H.; Sato, F. Mining of the Uncharacterized Cytochrome

P450 Genes Involved in Alkaloid Biosynthesis in California Poppy Using a Draft Genome Sequence. Plant Cell Physiol. 2018, 59,

222–233. [CrossRef]

110. Ming, R.; VanBuren, R.; Liu, Y.; Yang, M.; Han, Y.; Li, L.-T.; Zhang, Q.; Kim, M.-J.; Schatz, M.C.; Campbell, M.; et al. Genome of

the Long-Living Sacred Lotus (Nelumbo Nucifera Gaertn.). Genome Biol. 2013, 14, R41. [CrossRef]

111. Liu, Y.; Wang, B.; Shu, S.; Li, Z.; Song, C.; Liu, D.; Niu, Y.; Liu, J.; Zhang, J.; Liu, H.; et al. Analysis of the Coptis Chinensis Genome

Reveals the Diversification of Protoberberine-Type Alkaloids. Nat. Commun. 2021, 12, 3276. [CrossRef]

112. Yamada, Y.; Hirakawa, H.; Hori, K.; Minakuchi, Y.; Toyoda, A.; Shitan, N.; Sato, F. Comparative Analysis Using the Draft Genome

Sequence of California Poppy (Eschscholzia Californica) for Exploring the Candidate Genes Involved in Benzylisoquinoline

Alkaloid Biosynthesis. Biosci. Biotechnol. Biochem. 2021, 85, 851–859. [CrossRef] [PubMed]

113. Yamada, Y.; Shimada, T.; Motomura, Y.; Sato, F. Modulation of Benzylisoquinoline Alkaloid Biosynthesis by Heterologous

Expression of CjWRKY1 in Eschscholzia Californica Cells. PLoS ONE 2017, 12, e0186953. [CrossRef] [PubMed]

114. Yamada, Y.; Nishida, S.; Shitan, N.; Sato, F. Genome-Wide Profiling of WRKY Genes Involved in Benzylisoquinoline Alkaloid

Biosynthesis in California Poppy (Eschscholzia Californica). Front. Plant Sci. 2021, 12. [CrossRef] [PubMed]

115. Apuya, N.R.; Park, J.-H.; Zhang, L.; Ahyow, M.; Davidow, P.; Van Fleet, J.; Rarang, J.C.; Hippley, M.; Johnson, T.W.; Yoo, H.-D.;

et al. Enhancement of Alkaloid Production in Opium and California Poppy by Transactivation Using Heterologous Regulatory

Factors. Plant Biotechnol. J. 2008, 6, 160–175. [CrossRef] [PubMed]

116. Yamada, Y.; Yoshimoto, T.; Yoshida, S.T.; Sato, F. Characterization of the Promoter Region of Biosynthetic Enzyme Genes Involved

in Berberine Biosynthesis in Coptis Japonica. Front. Plant Sci. 2016, 7, 1352. [CrossRef]

117. Paschold, A.; Halitschke, R.; Baldwin, I.T. Co(i)-Ordinating Defenses: NaCOI1 Mediates Herbivore- Induced Resistance in

Nicotiana Attenuata and Reveals the Role of Herbivore Movement in Avoiding Defenses. Plant J. 2007, 51, 79–91. [CrossRef]

[PubMed]

118. Shoji, T.; Ogawa, T.; Hashimoto, T. Jasmonate-Induced Nicotine Formation in Tobacco Is Mediated by Tobacco COI1 and JAZ

Genes. Plant Cell Physiol. 2008, 49, 1003–1012. [CrossRef] [PubMed]

119. Abdelkareem, A.; Thagun, C.; Nakayasu, M.; Mizutani, M.; Hashimoto, T.; Shoji, T. Jasmonate-Induced Biosynthesis of Steroidal

Glycoalkaloids Depen ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る