リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A FINER SINGULAR LIMIT OF A SINGLE-WELL MODICA-MORTOLA FUNCTIONAL AND ITS APPLICATIONS TO THE KOBAYASHI-WARREN-CARTER ENERGY」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A FINER SINGULAR LIMIT OF A SINGLE-WELL MODICA-MORTOLA FUNCTIONAL AND ITS APPLICATIONS TO THE KOBAYASHI-WARREN-CARTER ENERGY

GIGA, YOSHIKAZU OKAMOTO, JUN UESAKA, MASAAKI 北海道大学

2020.03.25

概要

An explicit representation of the Gamma limit of a single-well Modica-Mortola functional is given for one-dimensional space under the graph convergence which is finer than conventional L1-convergence or convergence in measure. As an application, an explicit representation of a singular limit of the Kobayashi-Warren-Carter energy, which is popular in materials science, is given. Some compactness under the graph convergence is also established. Such formulas as well as compactness is useful to characterize the limit of minimizers the Kobayashi-Warren-Carter energy. To characterize the Gamma limit under the graph convergence, a new idea which is especially useful for one-dimensional problem is introduced. It is a change of parameter of the variable by arc-length parameter of its graph, which is called unfolding by the arc-length parameter in this paper.

参考文献

[1] Aubin, J.-P., Frankowska, H.: Set-valued analysis. Modern Birkh¨auser Classics. Birkhh¨auser Boston, Inc., Boston, MA (2009)

[2] Ambrosio, L., Tortorelli, V. M.: Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43, 999–1036 (1990)

[3] Ambrosio, L., Tortorelli, V. M.: On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7) 6, 105–123 (1992)

[4] Bonnivard, M., Lemenant, A., Millot, V.: On a phase field approximation of the planar Steiner problem: existence, regularity, and asymptotic of minimizers. Interfaces Free Bound. 20, 69–106 (2018)

[5] Braides, A.: Γ-convergence for beginners. Oxford University Press, Oxford (2002)

[6] Bronsard, L., Kohn, R. V.,: Motion by mean curvature as the singular limit of Ginzburg- Landau dynamics. J. Differential Equations 90, 211–237 (1991)

[7] Chen, X.: Generation and propagation of interfaces for reaction-diffusion equations. J. Dif- ferential Equations 96, 116–141 (1992)

[8] de Mottoni, P., Schatzman, M.: Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347, 1533–1589 (1995)

[9] Evans, L. C., Soner, H. M., Souganidis, P. E.: Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math. 45, 1097–1123 (1992)

[10] Francfort, G. A., Le, N. Q., Serfaty, S.: Critical points of Ambrosio–Tortorelli converge to critical points of Mumford–Shah in the one-dimensional Dirichlet case. ESAIM Control Optim. Calc. Var., 15, 576–598 (2009)

[11] Francfort, G. A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

[12] Fonseca, I., Liu, P.: The Weighted Ambrosio–Tortorelli Approximation Scheme. SIAM J. Math. Anal., 49(6), 4491–4520 (2017)

[13] Giacomini, A.: Ambrosio-Tortorelli approximation of quasi-static evolution of brittle frac- tures. Calc. Var. Partial Differential Equations 22, 129–172 (2005)

[14] Giga, Y.: Surface evolution equations: a level set approach. Birkh¨auser, Basel (2006)

[15] Hutchinson, J. E., Tonegawa, Y.: Convergence of phase interfaces in the van der Waals-Cahn- Hilliard theory. Calc. Var. Partial Differential Equations 10, 49–84 (2000)

[16] Ito, A., Kenmochi, N., Yamazaki, N.: A phase-field model of grain boundary motion. Appl. Math. 53, 433–454 (2008)

[17] Kobayashi, R., Giga, Y.: Equations with singular diffusivity. J. Statist. Phys. 95, 1187–1220 (1999)

[18] Kobayashi, R., Warren, J. A., Carter, W. C.: Modeling grain boundaries using a phase field technique. Hokkaido University Preprint Series in Mathematics #422 (1998)

[19] Kobayashi, R., Warren, J. A., Carter, W. C.: A continuum model of grain boundaries. Physica D: Nonlinear Phenomena, 140(1–2), 141–150 (2000)

[20] Kobayashi, R., Warren, J. A., Carter, W. C.: Grain boundary model and singular diffusivity: In: Free boundary problems: theory and applications, GAKUTO Inter- nat. Ser. Math. Sci. Appl. 14, 283–294, Gakk¯otosho, Tokyo (2000)

[21] Kohn, R., Sternberg, P.: Local minimisers and singular perturbations. Proc. Roy. Soc. Edin- burgh Sect. A 111, 69–84 (1989)

[22] Lemenant, A., Santambrogio, F.: A Modica–Mortola approximation for the Steiner problem. C. R. Math. Acad. Sci. Paris 352, 451–454 (2014)

[23] Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98, 123–142 (1987)

[24] Modica, L., Mortola, S.: Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5), 14, 526–529 (1977)

[25] Modica, L., Mortola, S.: Un esempio di Γ−-convergenza. Boll. Un. Mat. Ital. B (5), 14, 285–299 (1977)

[26] Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associ- ated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989)

[27] Moll, S., Shirakawa, K.: Existence of solutions to the Kobayashi–Warren–Carter system. Calc. Var. Partial Differential Equations, 51(3-4):621–656 (2014)

[28] Moll, S., Shirakawa, K., Watanabe, H.: Energy dissipative solutions to the Kobayashi– Warren–Carter system. Nonlinearity, 30(7):2752–2784 (2017)

[29] Moll, S., Shirakawa, K., Watanabe, H.: Kobayashi–Warren–Carter type systems with nonho- mogeneous Dirichlet boundary data for crystalline orientation. In preparation

[30] Watanabe, H., Shirakawa, K.: Qualitative properties of a one-dimensional phase-field sys- tem associated with grain boundary. In Nonlinear analysis in interdisciplinary sciences— modellings, theory and simulations, volume 36 of GAKUTO Internat. Ser. Math. Sci. Appl., pages 301–328. Gakk¯otosho, Tokyo, 2013.

[31] Shirakawa, K., Watanabe, H.: Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion. Discrete Contin. Dyn. Syst. Ser. S, 7(1):139–159 (2014)

[32] Shirakawa, K., Watanabe, H., Yamazaki, N.: Solvability of one-dimensional phase field sys- tems associated with grain boundary motion. Math. Ann. 356, 301–330 (2013)

[33] Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Rational Mech. Anal. 101, 209–260 (1988)

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る