リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Important Role of Concomitant Lymphangiogenesis for Reparative Angiogenesis in Hindlimb Ischemia」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Important Role of Concomitant Lymphangiogenesis for Reparative Angiogenesis in Hindlimb Ischemia

Pu, Zhongyue Shimizu, Yuuki Tsuzuki, Kazuhito Suzuki, Junya Hayashida, Ryo Kondo, Kazuhisa Fujikawa, Yusuke Unno, Kazumasa Ohashi, Koji Takefuji, Mikito Bando, Yasuko K. Ouchi, Noriyuki Calvert, John W. Shibata, Rei Murohara, Toyoaki 名古屋大学

2021.06

概要

Objective:
Lymphatic vessels are distributed throughout the body and tightly collaborate with blood vessels to maintain tissue homeostasis. However, the functional roles of lymphangiogenesis in the process of reparative angiogenesis in ischemic tissues are largely unknown. Accordingly, we investigated potential roles of lymphangiogenesis using a mouse model of ischemia-induced angiogenesis.

Approach and Results:
Male C57BL/6J mice were subjected to unilateral hindlimb ischemia, in which not only angiogenesis but also lymphangiogenesis was induced. Next, the excessive and prolonged tissue edema model significantly deteriorated reparative angiogenesis and blood perfusion recovery in ischemic limbs. Finally, implantation of adipose-derived regenerative cells augmented ischemia-induced lymphangiogenesis, which was accompanied by reduced tissue edema and inflammation, resulting in improving reparative angiogenesis and blood perfusion recovery. In addition, inhibition of lymphangiogenesis by MAZ51, a specific VEGFR3 (vascular endothelial cell growth factor receptor 3) inhibitor, resulted in enhanced inflammatory cell infiltration, gene expression of TNF (tumor necrosis factor)-α, IL (interleukin)-1β, IL-6, TGF (transforming growth factor)-β, angiostatin, vasohibin, and endostatin, and tissue edema, resulting in reduced angiogenesis.

Conclusions:
The lymphatic system may have a clearance role of tissue edema and inflammation, which contribute to functional reparative angiogenesis in response to tissue ischemia. Modulation of lymphangiogenesis would become a novel therapeutic strategy for severe ischemic disease in addition to ordinary vascular intervention and therapeutic angiogenesis.

この論文で使われている画像

参考文献

1. Kinlay S. Management of Critical Limb Ischemia. Circ Cardiovasc Interv. 2016;9:e001946.

2. Uccioli L, Meloni M, Izzo V, Giurato L, Merolla S and Gandini R. Critical limb ischemia: current challenges and future prospects. Vasc Health Risk Manag. 2018;14:63-74.

3. Laird JR, Singh GD and Armstrong EJ. Contemporary Management of Critical Limb Ischemia: The BEST Is Yet to Come. J Am Coll Cardiol. 2016;67:1914-6.

4. Gaspar D, Peixoto R, De Pieri A, Striegl B, Zeugolis DI and Raghunath M. Local pharmacological induction of angiogenesis: Drugs for cells and cells as drugs. Adv Drug Deliv Rev. 2019.

5. Kondo K, Yanishi K, Hayashida R, Shintani S, Shibata R, Murotani K, Ando M, Mizuno M, Fujiwara T, Murohara T, Matoba S and Investigators TF-uS. Long-Term Clinical Outcomes Survey of Bone Marrow-Derived Cell Therapy in Critical Limb Ischemia in Japan. Circ J. 2018;82:1168-1178.

6. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T and Therapeutic Angiogenesis using Cell Transplantation Study I. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427-35.

7. Katagiri T, Kondo K, Shibata R, Hayashida R, Shintani S, Yamaguchi S, Shimizu Y, Unno K, Kikuchi R, Kodama A, Takanari K, Kamei Y, Komori K and Murohara T. Therapeutic angiogenesis using autologous adipose-derived regenerative cells in patients with critical limb ischaemia in Japan: a clinical pilot study. Sci Rep. 2020;10:16045.

8. Schultz GS, Sibbald RG, Falanga V, Ayello EA, Dowsett C, Harding K, Romanelli M, Stacey MC, Teot L and Vanscheidt W. Wound bed preparation: a systematic approach to wound management. Wound Repair Regen. 2003;11 Suppl 1:S1-28.

9. Nishijima A, Gosho M, Yoshida R, Yanagibayashi S, Takikawa M, Nishijima J, Sekido M and Yamamoto N. Effective wound bed preparation using maggot debridement therapy for patients with critical limb ischaemia. J Wound Care. 2017;26:483-489.

10. Zheng W, Aspelund A and Alitalo K. Lymphangiogenic factors, mechanisms, and applications. J Clin Invest. 2014;124:878-87.

11. Kerjaschki D. The lymphatic vasculature revisited. J Clin Invest. 2014;124:874-7.

12. Robinet P, Milewicz DM, Cassis LA, Leeper NJ, Lu HS and Smith JD. Consideration of Sex Differences in Design and Reporting of Experimental Arterial Pathology Studies-Statement From ATVB Council. Arterioscler Thromb Vasc Biol. 2018;38:292-303.

13. Kondo K, Shintani S, Shibata R, Murakami H, Murakami R, Imaizumi M, Kitagawa Y and Murohara T. Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29:61-6.

14. Hao C, Shintani S, Shimizu Y, Kondo K, Ishii M, Wu H and Murohara T. Therapeutic angiogenesis by autologous adipose-derived regenerative cells: comparison with bone marrow mononuclear cells. Am J Physiol Heart Circ Physiol. 2014;307:H869-79.

15. Benedito R, Rocha SF, Woeste M, Zamykal M, Radtke F, Casanovas O, Duarte A, Pytowski B and Adams RH. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature. 2012;484:110-4.

16. Shimizu Y, Polavarapu R, Eskla KL, Pantner Y, Nicholson CK, Ishii M, Brunnhoelzl D, Mauria R, Husain A, Naqvi N, Murohara T and Calvert JW. Impact of Lymphangiogenesis on Cardiac Remodeling After Ischemia and Reperfusion Injury. J Am Heart Assoc. 2018;7:e009565.

17. Shimizu Y, Shibata R, Shintani S, Ishii M and Murohara T. Therapeutic lymphangiogenesis with implantation of adipose-derived regenerative cells. J Am Heart Assoc. 2012;1:e000877.

18. Shimizu Y, Shibata R, Ishii M, Ohashi K, Kambara T, Uemura Y, Yuasa D, Kataoka Y, Kihara S, Murohara T and Ouchi N. Adiponectin-mediated modulation of lymphatic vessel formation and lymphedema. J Am Heart Assoc. 2013;2:e000438.

19. Shumiya T, Shibata R, Shimizu Y, Ishii M, Kubota R, Shintani S and Murohara T. Evidence for the therapeutic potential of ex vivo expanded human endothelial progenitor cells using autologous serum. Circ J. 2010;74:1006-13.

20. Schmitz D, Bangen JM, Herborn CU, Husain B, Lendemans S, Flohe SB, Metz KA, Schade FU, Taeger G, Oberbeck JR, Kobbe P, Waydhas C and Flohe S. Isolated closed minor-muscle injury of the lower leg did not cause an obvious systemic immune response. Inflamm Res. 2010;59:141-9.

21. Ogura Y, Ouchi N, Ohashi K, Shibata R, Kataoka Y, Kambara T, Kito T, Maruyama S, Yuasa D, Matsuo K, Enomoto T, Uemura Y, Miyabe M, Ishii M, Yamamoto T, Shimizu Y, Walsh K and Murohara T. Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation. 2012;126:1728-38.

22. Couffinhal T, Silver M, Zheng LP, Kearney M, Witzenbichler B and Isner JM. Mouse model of angiogenesis. Am J Pathol. 1998;152:1667-79.

23. Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, Jones M and Jackson DG. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol. 1999;144:789-801.

24. Schwager S and Detmar M. Inflammation and Lymphatic Function. Front Immunol. 2019;10:308.

25. Santambrogio L. The Lymphatic Fluid. Int Rev Cell Mol Biol. 2018;337:111-133.

26. Watanabe K, Hasegawa Y, Yamashita H, Shimizu K, Ding Y, Abe M, Ohta H, Imagawa K, Hojo K, Maki H, Sonoda H and Sato Y. Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. J Clin Invest. 2004;114:898-907.

27. Sim BK, MacDonald NJ and Gubish ER. Angiostatin and endostatin: endogenous inhibitors of tumor growth. Cancer Metastasis Rev. 2000;19:181-90.

28. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N and Alitalo K. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996;15:290-98.

29. Ji RC. Recent advances and new insights into muscular lymphangiogenesis in health and disease. Life Sci. 2018;211:261-269.

30. Witzenbichler B, Asahara T, Murohara T, Silver M, Spyridopoulos I, Magner M, Principe N, Kearney M, Hu JS and Isner JM. Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol. 1998;153:381-94.

31. Sainson RC, Johnston DA, Chu HC, Holderfield MT, Nakatsu MN, Crampton SP, Davis J, Conn E and Hughes CC. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood. 2008;111:4997-5007.

32. Frater-Schroder M, Risau W, Hallmann R, Gautschi P and Bohlen P. Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci U S A. 1987;84:5277-81.

33. Mano-Hirano Y, Sato N, Sawasaki Y, Haranaka K, Satomi N, Nariuchi H and Goto T. Inhibition of tumor-induced migration of bovine capillary endothelial cells by mouse and rabbit tumor necrosis factor. J Natl Cancer Inst. 1987;78:115-20.

34. Sato N, Goto T, Haranaka K, Satomi N, Nariuchi H, Mano-Hirano Y and Sawasaki Y. Actions of tumor necrosis factor on cultured vascular endothelial cells: morphologic modulation, growth inhibition, and cytotoxicity. J Natl Cancer Inst. 1986;76:1113-21.

35. Guo DQ, Wu LW, Dunbar JD, Ozes ON, Mayo LD, Kessler KM, Gustin JA, Baerwald MR, Jaffe EA, Warren RS and Donner DB. Tumor necrosis factor employs a protein-tyrosine phosphatase to inhibit activation of KDR and vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem. 2000;275:11216-21.

36. Patterson C, Perrella MA, Endege WO, Yoshizumi M, Lee ME and Haber E. Downregulation of vascular endothelial growth factor receptors by tumor necrosis factor-alpha in cultured human vascular endothelial cells. J Clin Invest. 1996;98:490-6.

37. Menon C, Iyer M, Prabakaran I, Canter RJ, Lehr SC and Fraker DL. TNF-alpha downregulates vascular endothelial Flk-1 expression in human melanoma xenograft model. Am J Physiol Heart Circ Physiol. 2003;284:H317-29.

38. Marcos-Ramiro B, Garcia-Weber D and Millan J. TNF-induced endothelial barrier disruption: beyond actin and Rho. Thromb Haemost. 2014;112:1088-102.

39. Hippenstiel S, Krull M, Ikemann A, Risau W, Clauss M and Suttorp N. VEGF induces hyperpermeability by a direct action on endothelial cells. Am J Physiol. 1998;274:L678-84.

40. Hioki H, Miyashita Y, Miura T, Ebisawa S, Motoki H, Izawa A, Tomita T, Koyama J and Ikeda U. Prognostic improvement by multidisciplinary therapy in patients with critical limb ischemia. Angiology. 2015;66:187-94.

41. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH and Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994;79:315-28.

42. Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA and Bouck NP. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A. 1990;87:6624-8.

43. Rastinejad F, Polverini PJ and Bouck NP. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell. 1989;56:345-55.

44. Parangi S, O'Reilly M, Christofori G, Holmgren L, Grosfeld J, Folkman J and Hanahan D. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci U S A. 1996;93:2002-7.

45. Ribatti D. The Chick Embryo Chorioallantoic Membrane as an In Vivo Assay to Study Antiangiogenesis. Pharmaceuticals (Basel). 2010;3:482-513.

46. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR and Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88:277-85.

47. Marneros AG, She H, Zambarakji H, Hashizume H, Connolly EJ, Kim I, Gragoudas ES, Miller JW and Olsen BR. Endogenous endostatin inhibits choroidal neovascularization. FASEB J. 2007;21:3809-18.

48. Skovseth DK, Veuger MJ, Sorensen DR, De Angelis PM and Haraldsen G. Endostatin dramatically inhibits endothelial cell migration, vascular morphogenesis, and perivascular cell recruitment in vivo. Blood. 2005;105:1044-51.

49. Miyake K, Nishida K, Kadota Y, Yamasaki H, Nasu T, Saitou D, Tanabe K, Sonoda H, Sato Y, Maeshima Y and Makino H. Inflammatory cytokine-induced expression of vasohibin-1 by rheumatoid synovial fibroblasts. Acta Med Okayama. 2009;63:349-58.

50. Zhou SY, Xie ZL, Xiao O, Yang XR, Heng BC and Sato Y. Inhibition of mouse alkali burn induced-corneal neovascularization by recombinant adenovirus encoding human vasohibin-1. Mol Vis. 2010;16:1389-98.

51. Shen J, Yang X, Xiao WH, Hackett SF, Sato Y and Campochiaro PA. Vasohibin is up-regulated by VEGF in the retina and suppresses VEGF receptor 2 and retinal neovascularization. FASEB J. 2006;20:723-5.

52. Yamashita H, Abe M, Watanabe K, Shimizu K, Moriya T, Sato A, Satomi S, Ohta H, Sonoda H and Sato Y. Vasohibin prevents arterial neointimal formation through angiogenesis inhibition. Biochem Biophys Res Commun. 2006;345:919-25.

53. Shimizu Y, Calvert JW and Murohara T. Adipose-Derived Regenerative Cells for Cardiovascular Regeneration--A Novel Therapy for the Cardiac Conduction System. Circ J. 2015;79:2555-6.

参考文献をもっと見る