リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Reliability assessment of the physical modeling of liquefaction-induced effects on shallow foundations considering nonuniformity in the centrifuge model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Reliability assessment of the physical modeling of liquefaction-induced effects on shallow foundations considering nonuniformity in the centrifuge model

KUMAR RITESH 笠間 清伸 高橋 章浩 Ritesh Kumar Kiyonobu Kasama Akihiro Takahashi 東京工業大学 DOI:https://doi.org/10.1016/j.compgeo.2020.103558

2020.06.01

概要

Physical modeling has been widely used to simulate geotechnical earthquake engineering-related problems and to validate finite element numerical models. In both cases, the model ground is usually considered to have uniform soil properties. However, the model ground is prone to spatial nonuniformity and may affect engineering judgment based on physical modeling. This paper presents a reliability assessment of the physical modeling of liquefaction-induced effects on shallow foundations considering the spatial variability in the centrifuge model. Two-dimensional (2D) finite element simulations with the PM4Sand (version 3.1) elastoplastic soil constitutive model are performed for a sufficient number of stochastic realizations. The nonuniformity in the centrifuge model is implemented with stochastic realizations of the overburden and energy- corrected, equivalent clean sand, SPT (N1)60cs values using a spatially correlated Gaussian random field. The reliability of the centrifuge model test is assessed based on the stochastic average settlement and tilt of the foundation-structure system. The implications of the nonuniformity in the centrifuge model on the liquefaction extent of the ground and spectral displacement of the foundation are also investigated.

この論文で使われている画像

参考文献

1. Adamidis, O., Madabhushi, G. S. (2019). Numerical modelling of post-liquefaction reconsolidation. In Online Proceedings: 2nd International Conference on Natural Hazards & Infrastructure (ICONHIC 2019) (p. 963).

2. Andrus, R. D., Stokoe II, K. H. (2000). Liquefaction resistance of soils from shear-wave velocity. Journal of geotechnical and geo-environmental engineering, 126 (11), 1015-1025. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015)

3. Bhattacharya, S., Hyodo, M., Goda, K., Tazoh, T., Taylor, C. A. (2011). Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake. Soil Dynamics and Earthquake Engineering 31 (11), 1618-1628. https://doi.org/10.1016/j.soildyn.2011.06.006

4. Bird, J. F., Bommer, J. J. (2004). Earthquake losses due to ground failure. Engineering geology 75 (2), 147-179. https://doi.org/10.1016/j.enggeo.2004.05.006

5. Bolton, M. D., Gui, M. W., Garnier, J., Corte, J. F., Bagge, G., Laue, J., & Renzi, R. (1999). Centrifuge cone penetration tests in sand. Géotechnique, 49 (4), 543-552. https://doi.org/10.1680/geot.1999.49.4.543

6. Boulanger, R. W., Ziotopoulou, K. (2017). PM4Sand (Version 3.1): A sand plasticity model for earthquake engineering applications. Center for Geotechnical Modeling Report No. UCD/CGM-17/01, Department of Civil and Environmental Engineering, University of California, Davis, Calif.

7. Bray, J. D., Stewart, J. P., Baturay, M. B., Durgunoglu, T., Onalp, A., Sancio, R. B., Barka, A. (2000). Damage patterns and foundation performance in Adapazari. Earthquake Spectra 16 (1), 163-189. https://doi.org/10.1193/1.1586152

8. Byrne, P. M., Park, S. S., Beaty, M., Sharp, M., Gonzalez, L., Abdoun, T. (2004). Numerical modeling of liquefaction and comparison with centrifuge tests. Canadian Geotechnical Journal, 41 (2), 193-211. https://doi.org/10.1139/t03-088

9. Chen, L., Ghofrani, A., Arduino, P. (2020). Prediction of LEAP-UCD-2017 centrifuge test results using two advanced plasticity sand models. In Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading (pp. 423-439).

10. Chiaro, G., Kiyota, T., Koseki, J. (2013). Strain localization characteristics of loose saturated Toyoura sand in undrained cyclic torsional shear tests with initial static shear. Soils and Foundations, 53 (1), 23-34. https://doi.org/10.1016/j.sandf.2012.07.016

11. Chiaro, G., Koseki, J., Sato, T. (2012). Effects of initial static shear on liquefaction and large deformation properties of loose saturated Toyoura sand in undrained cyclic torsional shear tests. Soils and Foundations, 52 (3), 498-510. https://doi.org/10.1016/j.sandf.2012.05.008

12. Christian, J. T., Ladd, C. C., Baecher, G. B. (1994). Reliability applied to slope stability analysis. Journal of Geotechnical Engineering, 120 (12), 2180-2207. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2180)

13. Constantine, P. G., Wang, Q. (2012). Random field simulation. < http://www. mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation>

14. Dashti, S., Bray, J. D. (2013). Numerical simulation of building response on liquefiable sand. Journal of Geotechnical and Geoenvironmental Engineering, 139 (8), 1235-1249. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000853

15. Dashti, S., Bray, J. D., Pestana, J. M., Riemer, M., Wilson, D. (2009). Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil. Journal of geotechnical and geoenvironmental engineering, 136 (1), 151-164. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000179

16. Duncan, J. M. (2000). Factors of safety and reliability in geotechnical engineering. Journal of geotechnical and geoenvironmental engineering, 126 (4), 307-316. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307)

17. Elgamal, A., Yang, Z., Lai, T., Kutter, B. L., Wilson, D. (2005). Dynamic response of saturated dense sand in laminated centrifuge container. Journal of Geotechnical and Geoenvironmental Engineering, 131 (5), 598-609. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(598)

18. Griffiths, D. V., Fenton, G. A. (2008). Risk assessment in geotechnical engineering (pp. 381- 399). Hoboken, New Jersey: John Wiley & Sons, Inc.

19. Iwasaki, T., Arakawa, T., Tokida, K. I. (1984). Simplified procedures for assessing soil liquefaction during earthquakes. International Journal of Soil Dynamics and Earthquake Engineering, 3 (1), 49-58. https://doi.org/10.1016/0261-7277(84)90027-5

20. Karimi, Z., Dashti, S. (2015). Numerical and centrifuge modeling of seismic soil–foundation– structure interaction on liquefiable ground. Journal of Geotechnical and Geoenvironmental Engineering, 142 (1), 04015061. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001346

21. Karimi, Z., Dashti, S. (2016). Seismic performance of shallow founded structures on liquefiable ground: validation of numerical simulations using centrifuge experiments. Journal of Geotechnical and Geoenvironmental Engineering, 142 (6), 04016011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001479

22. Kumar, R., Horikoshi, K., Takahashi, A. (2019a). Centrifuge testing to investigate effects of partial saturation on the response of shallow foundation in liquefiable ground under strong sequential ground motions. Soil Dynamics and Earthquake Engineering, 125, 105728. https://doi.org/10.1016/j.soildyn.2019.105728

23. Kumar, R., Sawaishi, M., Horikoshi, K., Takahashi, A. (2019b). Centrifuge modeling of hybrid foundation to mitigate the liquefaction-induced effects on shallow foundation resting on the liquefiable ground. Soils and Foundations, 59(6) (in press). https://doi.org/10.1016/j.sandf.2019.11.002

24. Li, Z., Kutter, B. L., Wilson, D. W., Sprott, K., Lee, J. S., Santamarina, J. C. (2005). Needle probe application for high-resolution assessment of soil spatial variability in the centrifuge. In Site Characterization and Modeling (pp. 1-15).

25. Liu, L., Dobry, R. (1997). Seismic response of shallow foundation on liquefiable sand. Journal of geotechnical and geoenvironmental engineering 123 (6), 557-567. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(557)

26. Macedo, J., Bray, J. D. (2018). Key Trends in Liquefaction-Induced Building Settlement. Journal of Geotechnical and Geoenvironmental Engineering, 144 (11), 04018076. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001951

27. Mazzoni, S., McKenna, F., Scott, M. H., Fenves, G. L. (2006). Open system for earthquake engineering simulation user command-language manual.

28. Montgomery, J., Boulanger, R. W. (2016). Effects of spatial variability on liquefaction-induced settlement and lateral spreading. Journal of Geotechnical and Geoenvironmental Engineering, 143 (1), 04016086. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001584

29. Olarte, J., Paramasivam, B., Dashti, S., Liel, A., Zannin, J. (2017). Centrifuge modeling of mitigation-soil-foundation-structure interaction on liquefiable ground. Soil Dynamics and Earthquake Engineering, 97, 304-323. https://doi.org/10.1016/j.soildyn.2017.03.014

30. Phoon, K. K., Ching, J. (2014). Risk and reliability in geotechnical engineering. CRC Press.

31. Phoon, K. K., Kulhawy, F. H. (1999). Characterization of geotechnical variability. Canadian geotechnical journal, 36 (4), 612-624. https://doi.org/10.1139/t99-038

32. Popescu, R., Prevost, J. H. (1993). Centrifuge validation of a numerical model for dynamic soil liquefaction. Soil Dynamics and Earthquake Engineering, 12 (2), 73-90. https://doi.org/10.1016/0267-7261(93)90047-U

33. Popescu, R., Prevost, J. H. (1995). Reliability assessment of centrifuge soil test results. Soil Dynamics and Earthquake Engineering, 14 (2), 93-101. https://doi.org/10.1016/0267- 7261(94)00037-H

34. Popescu, R., Prevost, J. H., Deodatis, G. (2004). 3D effects in seismic liquefaction of stochastically variable soil deposits. In Risk and variability in geotechnical engineering.

35. Rayhani, M. H., El Naggar, M. H. (2008). Numerical modeling of seismic response of rigid foundation on soft soil. International Journal of Geomechanics, 8 (6), 336-346. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:6(336)

36. Schofield, A. N. (1980). Cambridge geotechnical centrifuge operations. Geotechnique, 30 (3), 227-268. https://doi.org/10.1680/geot.1980.30.3.227

37. Shahir, H., Pak, A., Taiebat, M., Jeremić, B. (2012). Evaluation of variation of permeability in liquefiable soil under earthquake loading. Computers and Geotechnics, 40, 74-88. https://doi.org/10.1016/j.compgeo.2011.10.003

38. Sonmez, H., and Gokceoglu, C. (2005). A liquefaction severity index suggested for engineering practice. Environmental Geology, 48 (1), 81-91. https://doi.org/10.1007/s00254-005-1263-9

39. Taiebat, M., Shahir, H., Pak, A. (2007). Study of pore pressure variation during liquefaction using two constitutive models for sand. Soil Dynamics and Earthquake Engineering, 27 (1), 60-72. https://doi.org/10.1016/j.soildyn.2006.03.004

40. Takemura, J., Kondoh, M., Esaki, T., Kouda, M., Kusakabe, O. (1999). Centrifuge model tests on double propped wall excavation in soft clay. Soils and Foundations,39 (3), 75-87. https://doi.org/10.3208/sandf.39.3_75

41. Tokimatsu, K., Katsumata, K. (2012). Liquefaction-induced damage to buildings in Urayasu city during the 2011 Tohoku Pacific earthquake. In Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, 665-674.

42. Vanmarcke, E. (2010). Random fields: analysis and synthesis. World Scientific.

43. White, D. J., Take, W. A., Bolton, M. D. (2003). Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique, 53 (7), 619-631. https://doi.org/10.1680/geot.2003.53.7.619

44. Yamaguchi, A., Mori, T., Kazama, M., Yoshida, N. (2012). Liquefaction in Tohoku district during the 2011 off the Pacific Coast of Tohoku Earthquake. Soils and Foundations 52 (5), 811- 829. https://doi.org/10.1016/j.sandf.2012.11.005

45. Yang Z. (2000). Numerical Modeling of Earthquake Site Response Including Dilation and Liquefaction, PhD Thesis, Dept. of Civil Engineering and Engineering Mechanics, Columbia University, NY, New York.

46. Yoshimi, Y., Tokimatsu, K. (1977). Settlement of buildings on saturated sand during earthquakes. Soils Found., 17 (1), 23–38. https://doi.org/10.3208/sandf1972.17.23

47. Zhang, J., Zhang, L. M., Tang, W. H. (2009). Bayesian framework for characterizing geotechnical model uncertainty. Journal of Geotechnical and Geoenvironmental Engineering, 135 (7), 932-940. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000018

48. Zhang, L. L., Zhang, L. M., Tang, W. H. (2008). Similarity of soil variability in centrifuge models. Canadian Geotechnical Journal, 45 (8), 1118-1129. https://doi.org/10.1139/T08-066

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る