リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination

Lyu, Hao Hisatomi, Takashi Goto, Yosuke Yoshida, Masaaki Higashi, Tomohiro Katayama, Masao Takata, Tsuyoshi Minegishi, Tsutomu Nishiyama, Hiroshi Yamada, Taro Sakata, Yoshihisa Asakura, Kiyotaka Domen, Kazunari 信州大学 DOI:30996901

2021.02.16

概要

Photocatalytic water splitting is a viable approach to the large-scale production of renewable solar hydrogen. The apparent quantum yield for this reaction has been improved, but the lifespan of photocatalysts functioning under sunlight at ambient pressure have rarely been examined, despite the critical importance of this factor in practical applications. Herein, we show that Al-doped SrTiO3 (SrTiO3: Al) loaded with a RhCrOx (rhodium chromium oxide) cocatalyst splits water with an apparent quantum yield greater than 50% at 365 nm. Moreover, following the photodeposition of CoOOH and TiO2, this material maintains 80% of its initial activity and a solar-to-hydrogen energy conversion efficiency greater than or equal to 0.3% over a span of 1300 h under constant illumination by simulated sunlight at ambient pressure. This result is attributed to reduced dissolution of Cr in the cocatalyst following the oxidative photodeposition of CoOOH. The photodeposition of TiO2 further improves the durability of this photocatalyst. This work demonstrates a concept that could allow the design of longterm, large-scale photocatalyst systems for practical sunlight-driven water splitting.

この論文で使われている画像

参考文献

1 X. Li, J. Yu, J. Low, Y. Fang, J. Xiao and X. Chen, J. Mater.

Chem. A, 2015, 3, 2485–2534.

2 B. Mei, K. Han and G. Mul, ACS Catal., 2018, 8, 9154–9164.

3 S. Chen, T. Takata and K. Domen, Nat. Rev. Mater., 2017, 2,

17050.

4 X. Yang and D. Wang, ACS Appl. Energy Mater., 2018, 1, 6657–

6693.

5 H. Kato, K. Asakura and A. Kudo, J. Am. Chem. Soc., 2003, 125,

3082–3089.

6 Y. Sakata, T. Hayashi, R. Yasunaga, N. Yanaga and

H. Imamura, Chem. Commun., 2015, 51, 12935–12938.

7 Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama,

T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome,

M. Katayama, S. Akiyama, H. Nishiyama, Y. Inoue,

T. Takewaki, T. Setoyama, T. Minegishi, T. Takata,

T. Yamada and K. Domen, Joule, 2017, 2, 509–520.

8 M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi,

M. L. Trudeau, H. Guo and Z. Mi, Nat. Commun., 2015, 6, 6797.

9 Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong,

C. Wang, Z. Pan, T. Takata, M. Nakabayashi, N. Shibata,

Y. Li, I. D. Sharp, A. Kudo, T. Yamada and K. Domen, Nat.

Mater., 2016, 15, 611–615.

10 W. Che, W. Cheng, T. Yao, F. Tang, W. Liu, H. Su, Y. Huang,

Q. Liu, J. Liu, F. Hu, Z. Pan, Z. Sun and S. Wei, J. Am. Chem.

Soc., 2017, 139, 3021–3026.

11 T. Setoyama T, T. Takewaki, K. Domen and T. Tatsumi,

Faraday Discuss., 2017, 198, 509–527.

This journal is © The Royal Society of Chemistry 2019

Chemical Science

12 T. Ohno, L. Bai, T. Hisatomi, K. Maeda and K. Domen, J. Am.

Chem. Soc., 2012, 134, 8254–8259.

13 T. Takata, C. Pan, M. Nakabayashi, N. Shibata and

K. Domen, J. Am. Chem. Soc., 2015, 137, 9627–9634.

14 K. Maeda, K. Teramura, H. Masuda, T. Takata, N. Saito,

Y. Inoue and K. Domen, J. Phys. Chem. B, 2006, 110,

13107–13112.

15 M. Yoshida, K. Takanabe, K. Maeda, A. Ishikawa, J. Kubota,

Y. Sakata, Y. Ikezawa and K. Domen, J. Phys. Chem. C, 2009,

113, 10151–10157.

16 F. Zhang, A. Yamakata, K. Maeda, Y. Moriya, T. Takata,

J. Kubota, K. Teshima, S. Oishi and K. Domen, J. Am.

Chem. Soc., 2012, 134, 8348–8351.

17 G. G. Amatucci, J. M. Tarascon, D. Larcher and L. C. Klein,

Solid State Ionics, 1996, 84, 169–180.

18 M. W. Kanan, J. Yano, Y. Surendranath, M. Dinca,

V. K. Yachandra and D. G. Nocera, J. Am. Chem. Soc., 2010,

132, 13692–13701.

19 E. B. Castro, C. A. Gervasi and J. R. Vilche, J. Appl.

Electrochem., 1998, 28, 835–841.

20 S. Palmas, F. Ferrara, A. Vacca, M. Mascia and A. M. Polcaro,

Electrochim. Acta, 2007, 53, 400–406.

21 M. E. G. Lyons and M. P. Brandon, Int. J. Electrochem. Sci.,

2008, 3, 1425–1462.

22 K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue

and K. Domen, J. Phys. Chem. B, 2006, 110, 13753–13758.

23 R. Godin, T. Hisatomi, K. Domen and J. R. Durrant, Chem.

Sci., 2018, 9, 7546–7555.

Chem. Sci., 2019, 10, 3196–3201 | 3201

...

参考文献をもっと見る